Frontiers of Optoelectronics

, Volume 11, Issue 4, pp 348–359 | Cite as

Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells

  • Jikang Liu
  • Junli Li
  • Guoli TuEmail author
Research Article


The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-C61-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester (C60-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/C60-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the C60-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th: PC71BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives C60-2EPM was also used as a third compound in P3HT:PC61BM blend to form ternary system, the devices with addition of C60-2EPM exhibited better values than the control device.


interface compatibility functionalized fullerene derivatives tune energy alignment third compound ternary system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deng W, Gao K, Yan J, Liang Q, Xie Y, He Z, Wu H, Peng X, Cao Y. Origin of reduced open-circuit voltage in highly efficient small-molecule-based solar cells upon solvent vapor annealing. ACS Applied Materials & Interfaces, 2018, 10(9): 8141–8147CrossRefGoogle Scholar
  2. 2.
    Liao S H, Jhuo H J, Cheng Y S, Gupta V, Chen S A. A high performance inverted organic solar cell with a low band gap small molecule (p-DTS(FBTTh2)2) using a fullerene derivative-doped zinc oxide nano-film modified with a fullerene-based self-assembled monolayer as the cathode. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(45): 22599–22604CrossRefGoogle Scholar
  3. 3.
    Papamakarios V, Polydorou E, Soultati A, Droseros N, Tsikritzis D, Douvas A M, Palilis L, Fakis M, Kennou S, Argitis P, Vasilopoulou M. Surface modification of ZnO layers via hydrogen plasma treatment for efficient inverted polymer solar cells. ACS Applied Materials & Interfaces, 2016, 8(2): 1194–1205CrossRefGoogle Scholar
  4. 4.
    Singh S P, Kumar C H P, Nagarjuna P, Kandhadi J, Giribabu L, Chandrasekharam M, Biswas S, Sharma G D. Efficient solution processable polymer solar cells using newly designed and synthesized fullerene derivatives. Journal of Physical Chemistry C, 2016, 120(35): 19493–19503CrossRefGoogle Scholar
  5. 5.
    Wu Y, Zou Y, Yang H, Li Y, Li H, Cui C, Li Y. Achieving over 9.8% efficiency in nonfullerene polymer solar cells by environmentally friendly solvent processing. ACS Applied Materials & Interfaces, 2017, 9(42): 37078–37086CrossRefGoogle Scholar
  6. 6.
    Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Advanced Materials, 2017, 29(18): 1700144CrossRefGoogle Scholar
  7. 7.
    Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. Molecular optimization enables over 13% efficiency in organic solar cells. Journal of the American Chemical Society, 2017, 139(21): 7148–7151CrossRefGoogle Scholar
  8. 8.
    Chakravarthi N, Gunasekar K, Cho W, Long D X, Kim Y H, Song C E, Lee J C, Facchetti A, Song M, Noh Y Y, Jin S H. A simple structured and efficient triazine-based molecule as an interfacial layer for high performance organic electronics. Energy & Environmental Science, 2016, 9(8): 2595–2602CrossRefGoogle Scholar
  9. 9.
    George Z, Xia Y, Sharma A, Lindqvist C, Andersson G, Inganäs O, Moons E, Müller C, Andersson M R. Two-in-one: cathode modification and improved solar cell blend stability through addition of modified fullerenes. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(7): 2663–2669CrossRefGoogle Scholar
  10. 10.
    Jeong M, Chen S, Lee S M, Wang Z, Yang Y, Zhang Z G, Zhang C, Xiao M, Li Y, Yang C. Feasible D1-A-D2-A random copolymers for simultaneous high-performance fullerene and nonfullerene solar cells. Advanced Energy Materials, 2018, 8(7): 1702166CrossRefGoogle Scholar
  11. 11.
    Kim T, Younts R, Lee W, Lee S, Gundogdu K, Kim B J. Impact of the photo-induced degradation of electron acceptors on the photophysics, charge transport and device performance of allpolymer and fullerene–polymer solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(42): 22170–22179CrossRefGoogle Scholar
  12. 12.
    Wang W, Song L, Magerl D, Moseguí González D, Körstgens V, Philipp M, Moulin J F, Müller-Buschbaum P. Influence of solvent additive 1,8-octanedithiol on P3HT:PCBM solar cells. Advanced Functional Materials, 2018, 28(20): 1800209CrossRefGoogle Scholar
  13. 13.
    Cai X, Yuan T, Liu X, Tu G. Self-assembly of 1-pyrenemethanol on ZnO surface toward combined cathode buffer layers for inverted polymer solar cells. ACS Applied Materials & Interfaces, 2017, 9 (41): 36082–36089CrossRefGoogle Scholar
  14. 14.
    Lu S, Lin H, Zhang S, Hou J, Choy W C H. A switchable interconnecting layer for high performance tandem organic solar cell. Advanced Energy Materials, 2017, 7(21): 1701164CrossRefGoogle Scholar
  15. 15.
    Zhang F, Shi W, Luo J, Pellet N, Yi C, Li X, Zhao X, Dennis T J S, Li X, Wang S, Xiao Y, Zakeeruddin S M, Bi D, Grätzel M. Isomerpure bis-PCBM-assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability. Advanced Materials, 2017, 29(17): 1606806CrossRefGoogle Scholar
  16. 16.
    Choi H, Mai C K, Kim H B, Jeong J, Song S, Bazan G C, Kim J Y, Heeger A J. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6(1): 7348CrossRefGoogle Scholar
  17. 17.
    Lange I, Reiter S, Pätzel M, Zykov A, Nefedov A, Hildebrandt J, Hecht S, Kowarik S, Wöll C, Heimel G, Neher D. Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Advanced Functional Materials, 2014, 24(44): 7014–7024CrossRefGoogle Scholar
  18. 18.
    Nam S, Seo J, Song M, Kim H, Ree M, Gal Y S, Bradley D D C, Kim Y. Polyacetylene-based polyelectrolyte as a universal interfacial layer for efficient inverted polymer solar cells. Organic Electronics, 2017, 48: 61–67CrossRefGoogle Scholar
  19. 19.
    Cheng Y J, Cao F Y, Lin W C, Chen C H, Hsieh C H. Selfassembled and cross-linked fullerene interlayer on titanium oxide for highly efficient inverted polymer solar cells. Chemistry of Materials, 2011, 23(6): 1512–1518CrossRefGoogle Scholar
  20. 20.
    Seo J H, Gutacker A, Sun Y, Wu H, Huang F, Cao Y, Scherf U, Heeger A J, Bazan G C. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. Journal of the American Chemical Society, 2011, 133(22): 8416–8419CrossRefGoogle Scholar
  21. 21.
    Zhou D, Xiong S, Chen L, Cheng X, Xu H, Zhou Y, Liu F, Chen Y. A green route to a novel hyperbranched electrolyte interlayer for nonfullerene polymer solar cells with over 11% efficiency. Chemical Communications (Cambridge), 2018, 54(5): 563–566CrossRefGoogle Scholar
  22. 22.
    Chao Y H, Huang Y Y, Chang J Y, Peng S H, Tu W Y, Cheng Y J, Hou J, Hsu C S. A crosslinked fullerene matrix doped with an ionic fullerene as a cathodic buffer layer toward high-performance and thermally stable polymer and organic metallohalide perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(40): 20382–20388CrossRefGoogle Scholar
  23. 23.
    Zhang J, Xue R, Xu G, Chen W, Bian G Q, Wei C, Li Y, Li Y. Selfdoping fullerene electrolyte-based electron transport layer for allroom- temperature-processed high-performance flexible polymer solar cells. Advanced Functional Materials, 2018, 28(13): 1705847CrossRefGoogle Scholar
  24. 24.
    Zhao F,Wang Z, Zhang J, Zhu X, Zhang Y, Fang J, Deng D, Wei Z, Li Y, Jiang L, Wang C. Self-doped and crown-ether functionalized fullerene as cathode buffer layer for highly-efficient inverted polymer solar cells. Advanced Energy Materials, 2016, 6(9): 1502120CrossRefGoogle Scholar
  25. 25.
    Cui C, Li Y, Li Y. Fullerene derivatives for the applications as acceptor and cathode buffer layer materials for organic and perovskite solar cells. Advanced Energy Materials, 2017, 7(10): 1601251CrossRefGoogle Scholar
  26. 26.
    Derue L, Dautel O, Tournebize A, Drees M, Pan H, Berthumeyrie S, Pavageau B, Cloutet E, Chambon S, Hirsch L, Rivaton A, Hudhomme P, Facchetti A, Wantz G. Thermal stabilisation of polymer-fullerene bulk heterojunction morphology for efficient photovoltaic solar cells. Advanced Materials, 2014, 26(33): 5831–5838CrossRefGoogle Scholar
  27. 27.
    Duan C, Zhang K, Zhong C, Huang F, Cao Y. Recent advances in water/alcohol-soluble p-conjugated materials: new materials and growing applications in solar cells. Chemical Society Reviews, 2013, 42(23): 9071–9104CrossRefGoogle Scholar
  28. 28.
    Liu J, Ji Y, Liu Y, Xia Z, Han Y, Li Y, Sun B. Doping-free asymmetrical silicon heterocontact achieved by integrating conjugated molecules for high efficient solar cell. Advanced Energy Materials, 2017, 7(19): 1700311CrossRefGoogle Scholar
  29. 29.
    Pal A, Wen L K, Jun C Y, Jeon I, Matsuo Y, Manzhos S. Comparative density functional theory-density functional tight binding study of fullerene derivatives: effects due to fullerene size, addends, and crystallinity on band structure, charge transport and optical properties. Physical Chemistry Chemical Physics, 2017, 19(41): 28330–28343CrossRefGoogle Scholar
  30. 30.
    Zhang Z G, Li H, Qi B, Chi D, Jin Z, Qi Z, Hou J, Li Y, Wang J. Amine group functionalized fullerene derivatives as cathode buffer layers for high performance polymer solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(34): 9624CrossRefGoogle Scholar
  31. 31.
    Zhang F L, Gadisa A, Inganäs O, Svensson M, Andersson M R. Influence of buffer layers on the performance of polymer solar cells. Applied Physics Letters, 2004, 84(19): 3906–3908CrossRefGoogle Scholar
  32. 32.
    Li Y, Zhao Y, Chen Q, Yang YM, Liu Y, Hong Z, Liu Z, Hsieh Y T, Meng L, Li Y, Yang Y. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. Journal of the American Chemical Society, 2015, 137(49): 15540–15547CrossRefGoogle Scholar
  33. 33.
    Liu J, Li J, Liu X, Li F, Tu G. Amphiphilic diblock fullerene derivatives as cathode interfacial layers for organic solar cells. ACS Applied Materials & Interfaces, 2018, 10(3): 2649–2657CrossRefGoogle Scholar
  34. 34.
    Nguyen T L, Lee T H, Gautam B, Park S Y, Gundogdu K, Kim J Y, Woo H Y. Single component organic solar cells based on oligothiophene-fullerene conjugate. Advanced Functional Materials, 2017, 27(39): 1702474CrossRefGoogle Scholar
  35. 35.
    Chen Y, Qin Y, Wu Y, Li C, Yao H, Liang N, Wang X, Li W, Ma W, Hou J. From binary to ternary: improving the external quantum efficiency of small-molecule acceptor-based polymer solar cells with a minute amount of fullerene sensitization. Advanced Energy Materials, 2017, 7(17): 1700328CrossRefGoogle Scholar
  36. 36.
    Hodgkiss J M, Tu G, Albert-Seifried S, Huck W T S, Friend R H. Ion-induced formation of charge-transfer states in conjugated polyelectrolytes. Journal of the American Chemical Society, 2009, 131(25): 8913–8921CrossRefGoogle Scholar
  37. 37.
    Hummelen J C, Knight B W, Lepeq F, Wudl F, Yao J, Wilkins C L. Preparation and characterization of fulleroid and methanofullerene derivatives. Journal of Organic Chemistry, 1995, 60(3): 532–538CrossRefGoogle Scholar
  38. 38.
    Lee H K H, Telford A M, Röhr J A, Wyatt M F, Rice B, Wu J, de Castro Maciel A, Tuladhar S M, Speller E, McGettrick J, Searle J R, Pont S, Watson T, Kirchartz T, Durrant J R, Tsoi W C, Nelson J, Li Z. The role of fullerenes in the environmental stability of polymer: fullerene solar cells. Energy & Environmental Science, 2018, 11(2): 417–428CrossRefGoogle Scholar
  39. 39.
    Yamada M, Ochi R, Yamamoto Y, Okada S, Maeda Y. Transition-metal-catalyzed divergent functionalization of [60]fullerene with propargylic esters. Organic & Biomolecular Chemistry, 2017, 15 (40): 8499–8503CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations