Advertisement

Frontiers of Optoelectronics

, Volume 11, Issue 4, pp 317–332 | Cite as

Progress on photochromic diarylethenes with aggregation induced emission

  • Nuo-Hua Xie
  • Ying Chen
  • Huan Ye
  • Chong LiEmail author
  • Ming-Qiang Zhu
Review Article
  • 29 Downloads

Abstract

Among various photochromic compounds, diarylethenes (DAEs) have been widely studied and applied due to their excellent thermal bistability and fatigue resistance. Most researches are focused on the properties and applications of DAEs in solution. However, they meet the problem of fluorescence quenching at high concentration or at solid state which limits their performance in the practical applications. Fortunately, the DAE based photochromic aggregation-induced emission (AIE) materials do well in addressing this problem. This work here reviews the current research progress on the structures, properties and applications of the DAE based photochromic AIE materials and points out some existing problems so as to promote subsequent development of this field in the future.

Keywords

aggregation-induced emission (AIE) photochromism diarylethene (DAE) fluorescence photoswitching optical memory super-resolution imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Basic Research Program (973) of China (Nos. 2015CB755602, and 2013CB 922104), the National Natural Science Foundation of China (Grant Nos. 51673077, 51603078, and 21474034), the Fundamental Research Funds for the Central Universities (HUST: 2016YXMS029, HUST: 2018KFYXKJ C033), the Nature Science Foundation of Hubei Province (2018CFB574) and Director Fund of WNLO (2016).

References

  1. 1.
    Irie M, Mohri M. Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. Journal of Organic Chemistry, 1988, 53(4): 803–808Google Scholar
  2. 2.
    Irie M. Diarylethenes for memories and switches. Chemical Reviews, 2000, 100(5): 1685–1716CrossRefGoogle Scholar
  3. 3.
    Irie M, Fukaminato T, Matsuda K, Kobatake S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chemical Reviews, 2014, 114(24): 12174–12277CrossRefGoogle Scholar
  4. 4.
    Tian H, Chen B, Tu H Y, Müllen K. Novel bisthienylethene-based photochromic tetraazaporphyrin with photoregulating luminescence. Advanced Materials, 2002, 14(12): 918–923CrossRefGoogle Scholar
  5. 5.
    Li C, Liu J, Xie N, Yan H, Zhu M. Research progress on photoswitchable fluorescent dithienylethenes. Polymer Bulletin, 2015, (9): 142–162Google Scholar
  6. 6.
    Li C, Chen Y, Xie N, Liu J, Fan C, Zhou Q, Zhu M. Research progress on hydrophilic photoswitchable fluorescent diarylethenes. Chinese Journal of Applied Chemistry, 2017, 34(12): 1379–1402Google Scholar
  7. 7.
    Zou Y, Yi T, Xiao S, Li F, Li C, Gao X, Wu J, Yu M, Huang C. Amphiphilic diarylethene as a photoswitchable probe for imaging living cells. Journal of the American Chemical Society, 2008, 130 (47): 15750–15751CrossRefGoogle Scholar
  8. 8.
    Li C, Hu Z, Aldred M P, Zhao L X, Yan H, Zhang G F, Huang Z L, Li A D Q, Zhu MQ. Water-soluble polymeric photoswitching dyads impart super-resolution lysosome highlighters. Macromolecules, 2014, 47(24): 8594–8601CrossRefGoogle Scholar
  9. 9.
    Pärs M, Hofmann C C, Willinger K, Bauer P, Thelakkat M, Köhler J. An organic optical transistor operated under ambient conditions. Angewandte Chemie, 2011, 50(48): 11405–11408CrossRefGoogle Scholar
  10. 10.
    Berberich M, Krause A M, Orlandi M, Scandola F, Würthner F. Toward fluorescent memories with nondestructive readout: photoswitching of fluorescence by intramolecular electron transfer in a diaryl ethene-perylene bisimide photochromic system. Angewandte Chemie, 2008, 47(35): 6616–6619CrossRefGoogle Scholar
  11. 11.
    Berberich M, Natali M, Spenst P, Chiorboli C, Scandola F, Würthner F. Nondestructive photoluminescence read-out by intramolecular electron transfer in a perylene bisimide-diarylethene dyad. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18 (43): 13651–13664CrossRefGoogle Scholar
  12. 12.
    Moreno J, Schweighöfer F, Wachtveitl J, Hecht S. Reversible photomodulation of electronic communication in a p-conjugated photoswitch-fluorophore molecular dyad. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(3): 1070–1075Google Scholar
  13. 13.
    Szymański W, Beierle J M, Kistemaker H A V, Velema W A, Feringa B L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chemical Reviews, 2013, 113(8): 6114–6178CrossRefGoogle Scholar
  14. 14.
    Pu S Z, Sun Q, Fan C B, Wang R J, Liu G. Recent advances in diarylethene-based multi-responsive molecular switches. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(15): 3075–3093CrossRefGoogle Scholar
  15. 15.
    Li WB, Yao Q X, Sun L, Yang X D, Guo R Y, Zhang J. A viologenbased coordination polymer exhibiting high sensitivity towards various light sources. CrystEngComm, 2017, 19(4): 722–726CrossRefGoogle Scholar
  16. 16.
    Cai X, Zhu L, Bao S, Luo Q. Photochromic dithienylethenebranched triptycene hybrids. Dyes and Pigments, 2015, 121: 227–234CrossRefGoogle Scholar
  17. 17.
    Chen S, Yang Y, Wu Y, Tian H, Zhu W. Multi-addressable photochromic terarylene containing benzo[b]thiophene-1,1-dioxide unit as ethene bridge: multifunctional molecular logic gates on unimolecular platform. Journal of Materials Chemistry, 2012, 22 (12): 5486–5494CrossRefGoogle Scholar
  18. 18.
    Andréasson J, Pischel U. Molecules with a sense of logic: a progress report. Chemical Society Reviews, 2015, 44(5): 1053–1069CrossRefGoogle Scholar
  19. 19.
    Roubinet B, Bossi M L, Alt P, Leutenegger M, Shojaei H, Schnorrenberg S, Nizamov S, Irie M, Belov V N, Hell S W. Carboxylated photoswitchable diarylethenes for biolabeling and super-resolution RESOLFT microscopy. Angewandte Chemie, 2016, 55(49): 15429–15433CrossRefGoogle Scholar
  20. 20.
    Roubinet B, Weber M, Shojaei H, Bates M, Bossi M L, Belov V N, Irie M, Hell S W. Fluorescent photoswitchable diarylethenes for biolabeling and single-molecule localization microscopies with optical superresolution. Journal of the American Chemical Society, 2017, 139(19): 6611–6620CrossRefGoogle Scholar
  21. 21.
    Giordano L, Jovin T M, Irie M, Jares-Erijman E A. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). Journal of the American Chemical Society, 2002, 124(25): 7481–7489CrossRefGoogle Scholar
  22. 22.
    Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T. Organic chemistry: a digital fluorescent molecular photoswitch. Nature, 2002, 420(6917): 759–760CrossRefGoogle Scholar
  23. 23.
    Yun C, You J, Kim J, Huh J, Kim E. Photochromic fluorescence switching from diarylethenes and its applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2009, 10(3): 111–129CrossRefGoogle Scholar
  24. 24.
    Li C, Yan H, Zhang G F, Gong W L, Chen T, Hu R, Aldred M P, Zhu M Q. Photocontrolled intramolecular charge/energy transfer and fluorescence switching of tetraphenylethene-dithienyletheneperylenemonoimide triad with donor-bridge-acceptor structure. Chemistry, an Asian Journal, 2014, 9(1): 104–109CrossRefGoogle Scholar
  25. 25.
    Li C, Yan H, Zhao L X, Zhang G F, Hu Z, Huang Z L, Zhu M Q. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio. Nature Communications, 2014, 5 (1): 5709CrossRefGoogle Scholar
  26. 26.
    Sharnoff M. Photophysics of aromatic molecules: by John B. Birks (Wiley-Interscience, London, 1970) 704 pages, price 210 shillings. Journal of Luminescence, 1971, 4(1): 69–71Google Scholar
  27. 27.
    Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 2001, (18): 1740–1741Google Scholar
  28. 28.
    Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang B Z. Aggregationinduced emission: the whole is more brilliant than the parts. Advanced Materials, 2014, 26(31): 5429–5479CrossRefGoogle Scholar
  29. 29.
    Aldred M P, Li C, Zhang G F, Gong W L, Li A D Q, Dai Y, Ma D, Zhu M Q. Fluorescence quenching and enhancement of vitrifiable oligofluorenes end-capped with tetraphenylethene. Journal of Materials Chemistry, 2012, 22(15): 7515–7528CrossRefGoogle Scholar
  30. 30.
    Huang Z, Zhang X, Zhang X, Fu C, Wang K, Yuan J, Tao L, Wei Y. Amphiphilic fluorescent copolymers via one-pot combination of chemoenzymatic transesterification and RAFT polymerization: synthesis, self-assembly and cell imaging. Polymer Chemistry, 2015, 6(4): 607–612CrossRefGoogle Scholar
  31. 31.
    Tang B Z, Zhan X, Yu G, Sze Lee P P, Liu Y, Zhu D. Efficient blue emission from siloles. Journal of Materials Chemistry, 2001, 11(12): 2974–2978CrossRefGoogle Scholar
  32. 32.
    Shao A, Xie Y, Zhu S, Guo Z, Zhu S, Guo J, Shi P, James T D, Tian H, Zhu W H. Far-red and near-IR AIE-active fluorescent organic nanoprobes with enhanced tumor-targeting efficacy: shape-specific effects. Angewandte Chemie, 2015, 54(25): 7275–7280CrossRefGoogle Scholar
  33. 33.
    Zhang X Q, Chi Z G, Xu B J, Li H Y, Zhou W, Li X F, Zhang Y, Liu S W, Xu J R. Comparison of responsive behaviors of two cinnamic acid derivatives containing carbazolyl triphenylethylene. Journal of Fluorescence, 2011, 21(1): 133–140CrossRefGoogle Scholar
  34. 34.
    Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Aggregation-induced emission: together we shine, united we soar! Chemical Reviews, 2015, 115(21): 11718–11940Google Scholar
  35. 35.
    Lim S J, An B K, Jung S D, Chung MA, Park S Y. Photoswitchable organic nanoparticles and a polymer film employing multifunctional molecules with enhanced fluorescence emission and bistable photochromism. Angewandte Chemie, 2004, 43(46): 6346–6350CrossRefGoogle Scholar
  36. 36.
    Li C, Gong WL, Hu Z, Aldred MP, Zhang G F, Chen T, Huang Z L, Zhu M Q. Photoswitchable aggregation-induced emission of a dithienylethene-tetraphenylethene conjugate for optical memory and super-resolution imaging. RSC Advances, 2013, 3(23): 8967–8972CrossRefGoogle Scholar
  37. 37.
    Zhang X, Zhang X, Yang B, Hui J, Liu M, Chi Z, Liu S, Xu J, Wei Y. Novel biocompatible cross-linked fluorescent polymeric nanoparticles based on an AIE monomer. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2014, 2(5): 816–820CrossRefGoogle Scholar
  38. 38.
    Dong H, Luo M, Wang S, Ma X. Synthesis and properties of tetraphenylethylene derivatived diarylethene with photochromism and aggregation-induced emission. Dyes and Pigments, 2017, 139: 118–128CrossRefGoogle Scholar
  39. 39.
    Bunker C E, Hamilton N B, Sun Y P. Quantitative application of principal component analysis and self-modeling spectral resolution to product analysis of tetraphenylethylene photochemical reactions. Analytical Chemistry, 1993, 65(23): 3460–3465CrossRefGoogle Scholar
  40. 40.
    Aldred M P, Li C, Zhu M Q. Optical properties and photo-oxidation of tetraphenylethene-based fluorophores. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(50): 16037–16045Google Scholar
  41. 41.
    Gong WL, Wang B, Aldred MP, Li C, Zhang G F, Chen T, Wang L, Zhu M Q. Tetraphenylethene-decorated carbazoles: synthesis, aggregation-induced emission, photo-oxidation and electroluminescence. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2014, 2(34): 7001–7012CrossRefGoogle Scholar
  42. 42.
    Jiang B P, Guo D S, Liu Y C, Wang K P, Liu Y. Photomodulated fluorescence of supramolecular assemblies of sulfonatocalixarenes and tetraphenylethene. ACS Nano, 2014, 8(2): 1609–1618CrossRefGoogle Scholar
  43. 43.
    Ou D, Yu T, Yang Z, Luan T, Mao Z, Zhang Y, Liu S, Xu J, Chi Z, Bryce M R. Combined aggregation induced emission (AIE), photochromism and photoresponsive wettability in simple dichloro-substituted triphenylethylene derivatives. Chemical Science (Cambridge), 2016, 7(8): 5302–5306CrossRefGoogle Scholar
  44. 44.
    Zhu L, Wang R, Tan L, Liang X, Zhong C, Wu F. Aggregationinduced emission and aggregation-promoted photo-oxidation in thiophene-substituted tetraphenylethylene derivative. Chemistry, an Asian Journal, 2016, 11(20): 2932–2937CrossRefGoogle Scholar
  45. 45.
    Belen’kii L I, Gromova G P, Kolotaev A V, Nabatov B V, Krayushkin M M. Synthesis and photochromic properties of tetrakis (3,5-dimethyl-2-thienyl)-and tetrakis(2,5-dimethyl-3-thienyl)ethylenes. Russian Chemical Bulletin, 2005, 54(5): 1208–1213CrossRefGoogle Scholar
  46. 46.
    Luo Q, Cao F, Xiong C, Dou Q, Qu D H. Hybrid cis/trans tetraarylethenes with switchable aggregation-induced emission (AIE) and reversible photochromism in the solution, PMMA film, solid powder, and single crystal. Journal of Organic Chemistry, 2017, 82 (20): 10960–10967CrossRefGoogle Scholar
  47. 47.
    Ma L, Wang S, Li C, Cao D, Li T, Ma X. Photo-controlled fluorescence on/off switching of a pseudo[3]rotaxane between an AIE-active pillar[5]arene host and a photochromic bithienylethene guest. Chemical Communications, 2018, 54(19): 2405–2408CrossRefGoogle Scholar
  48. 48.
    Chen S, Li W, Li X, Zhu W H. Aggregation-controlled photochromism based on a dithienylethene derivative with aggregation-induced emission. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(10): 2717–2722CrossRefGoogle Scholar
  49. 49.
    Chen L, Zhang J, Wang Q, Zou L. Photo-controllable and aggregation-induced emission based on photochromic bithienylethene. Dyes and Pigments, 2015, 123: 112–115CrossRefGoogle Scholar
  50. 50.
    Su J, Fukaminato T, Placial J P, Onodera T, Suzuki R, Oikawa H, Brosseau A, Brisset F, Pansu R, Nakatani K, Métivier R. Giant amplification of photoswitching by a few photons in fluorescent photochromic organic nanoparticles. Angewandte Chemie, 2016, 55(11): 3662–3666CrossRefGoogle Scholar
  51. 51.
    Liu G, Zhang Y M, Zhang L, Wang C, Liu Y. Controlled photoerasable fluorescent behaviors with dithienylethene-based molecular turnstile. ACS Applied Materials & Interfaces, 2018, 10(15): 12135–12140CrossRefGoogle Scholar
  52. 52.
    Liu G, Zhang Y M, Xu X, Zhang L, Liu Y. Optically switchable luminescent hydrogel by synergistically intercalating photochromic molecular rotor into inorganic clay. Advanced Optical Materials., 2017, 5(11): 1700149CrossRefGoogle Scholar
  53. 53.
    Chung J W, Yoon S J, Lim S J, An B K, Park S Y. Dual-mode switching in highly fluorescent organogels: binary logic gates with optical/thermal inputs. Angewandte Chemie, 2009, 48(38): 7030–7034CrossRefGoogle Scholar
  54. 54.
    Sinawang G, Wang J, Wu B, Wang X, He Y. Photoswitchable aggregation-induced emission polymer containing dithienylethene and tetraphenylethene moieties. RSC Advances, 2016, 6(15): 12647–12651CrossRefGoogle Scholar
  55. 55.
    Lim S J, An B K, Park S Y. Bistable photoswitching in the film of fluorescent photochromic polymer: enhanced fluorescence emission and its high contrast switching. Macromolecules, 2005, 38(15): 6236–6239CrossRefGoogle Scholar
  56. 56.
    Singh R, Wu H Y, Kumar Dwivedi A, Singh A, Lin C M, Raghunath P, Lin M C, Wu T K, Wei K H, Lin H C. Monomeric and aggregation emissions of tetraphenylethene in a photo-switchable polymer controlled by cyclization of diarylethene and solvent conditions. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(38): 9952–9962CrossRefGoogle Scholar
  57. 57.
    Tsivgoulis G M, Lehn J M. Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory. Angewandte Chemie, 1995, 34(10): 1119–1122CrossRefGoogle Scholar
  58. 58.
    Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M. Single-molecule fluorescence photoswitching of a diarylethene-perylenebisimide dyad: non-destructive fluorescence readout. Journal of the American Chemical Society, 2011, 133(13): 4984–4990CrossRefGoogle Scholar
  59. 59.
    Berberich M, Wurthner F. Terrylene bisimide-diarylethene photochromic switch. Chemical Science (Cambridge), 2012, 3(9): 2771–2777CrossRefGoogle Scholar
  60. 60.
    Berberich M, Krause A M, Orlandi M, Scandola F, Würthner F. Toward fluorescent memories with nondestructive readout: photoswitching of fluorescence by intramolecular electron transfer in a diaryl ethene-perylene bisimide photochromic system. Angewandte Chemie, 2008, 47(35): 6616–6619CrossRefGoogle Scholar
  61. 61.
    Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M. Single-molecule fluorescence photoswitching of a diarylethene-perylenebisimide dyad: non-destructive fluorescence readout. Journal of the American Chemical Society, 2011, 133(13): 4984–4990CrossRefGoogle Scholar
  62. 62.
    Fernández-Suárez M, Ting A Y. Fluorescent probes for superresolution imaging in living cells. Nature Reviews, Molecular Cell Biology, 2008, 9(12): 929–943CrossRefGoogle Scholar
  63. 63.
    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006, 313(5793): 1642–1645CrossRefGoogle Scholar
  64. 64.
    Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 2006, 3(10): 793–796CrossRefGoogle Scholar
  65. 65.
    Yan J, Zhao L X, Li C, Hu Z, Zhang G F, Chen Z Q, Chen T, Huang Z L, Zhu J, Zhu M Q. Optical nanoimaging for block copolymer self-assembly. Journal of the American Chemical Society, 2015, 137(7): 2436–2439CrossRefGoogle Scholar
  66. 66.
    Huang B, Wang W, Bates M, Zhuang X. Three-dimensional superresolution imaging by stochastic optical reconstruction microscopy. Science, 2008, 319(5864): 810–813CrossRefGoogle Scholar
  67. 67.
    Heilemann M, Dedecker P, Hofkens J, Sauer M. Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser & Photonics Reviews, 2009, 3(1–2): 180–202CrossRefGoogle Scholar
  68. 68.
    Zhu M Q, Zhang G F, Li C, Li Y J, Aldred M P, Li A D Q. Photoswitchable nanofluorophores for innovative biomaging. Journal of Innovative Optical Health Sciences, 2011, 04(04): 395–408CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nuo-Hua Xie
    • 1
  • Ying Chen
    • 1
  • Huan Ye
    • 1
  • Chong Li
    • 1
  • Ming-Qiang Zhu
    • 1
  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations