Advertisement

Frontiers of Optoelectronics

, Volume 11, Issue 4, pp 367–374 | Cite as

BiOI/WO3 photoanode with enhanced photoelectrochemical water splitting activity

  • Weina Shi
  • Xiaowei Lv
  • Yan ShenEmail author
Research Article
  • 16 Downloads

Abstract

This work reports on a novel BiOI/WO3 composite photoanode, which was fabricated by depositing BiOI onto a WO3 nanoflake electrode through a electrodeposition method. The photoelectrochemical (PEC) activity of the BiOI/WO3 electrode for water splitting under visible-light irradiation was evaluated. The results show that the BiOI/WO3 photoanode achieved a photocurrent density of 1.21 mA·cm–2 at 1.23 V vs. reversible hydrogen electrode (RHE), which was higher than that of the bare WO3 nanoflake electrode (0.67 mA·cm–2). The enhanced PEC acticity of BiOI/WO3 for water splitting can be attributed to the expansion of light absorption range as well as the facilitated separation of photo-generated carriers.

Keywords

photoelectrochemistry WO3 BiOI water splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) Major International (Regional) Joint Research Project NSFC-SNSF (Grant No. 51661135023), NSFC (Grant No. 21673091), the National Basic Research Program (973 Program) of China (No. 2014CB643506), the Fundamental Research Funds for the Central Universities (HUST: 2016YXMS031), the Director Fund of the WNLO, the Open Funds of the State Key Laboratory of Electroanalytical Chemistry (No. SKLEAC201607), Key Scientific and Technological Project of Henan Province (No. 182102311084). The authors thank the Analytical and Testing Center of HUSTand the Center for Nanoscale Characterization & Devices (CNCD), WNLO-HUST for the measurements.

References

  1. 1.
    Kim H, Monllor-Satoca D, Kim W, Choi W. N-doped TiO2 nanotubes coated with a thin TaOxNy layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes. Energy & Environmental Science, 2015, 8(1): 247–257CrossRefGoogle Scholar
  2. 2.
    Fan X, Wang T, Gao B, Gong H, Xue H, Guo H, Song L, Xia W, Huang X, He J. Preparation of the TiO2/graphic carbon nitride coreshell array as photoanode for efficient photoelectrochemical water splitting. Langmuir, 2016, 32(50): 13322–13332CrossRefGoogle Scholar
  3. 3.
    Ding D, Dong B, Liang J, Zhou H, Pang Y, Ding S. Solvothermaletching process induced Ti-doped Fe2O3 thin film with low turn-on voltage for water splitting. ACS Applied Materials & Interfaces, 2016, 8(37): 24573–24578CrossRefGoogle Scholar
  4. 4.
    Feng X, Chen Y, Qin Z, Wang M, Guo L. Facile fabrication of sandwich structured WO3 nanoplate arrays for efficient photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2016, 8(28): 18089–18096CrossRefGoogle Scholar
  5. 5.
    Yan L, Zhao W, Liu Z. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Dalton Transactions (Cambridge, England), 2016, 45(28): 11346–11352CrossRefGoogle Scholar
  6. 6.
    Fan X, Wang T, Guo Y, Gong H, Xue H, Guo H, Gao B, He J. Synthesis of ordered mesoporous TiO2-Carbon-CNTs nanocomposite and its efficient photoelectrocatalytic methanol oxidation performance. Microporous and Mesoporous Materials, 2017, 240: 1–8CrossRefGoogle Scholar
  7. 7.
    Xue H, Wang T, Gong H, Guo H, Fan X, Gao B, Feng Y, Meng X, Huang X, He J. Constructing ordered three-dimensional channels of TiO2 for enhanced visible-light photo-catalytic performance of CO2 conversion induced by Au nanoparticles. Chemistry, an Asian Journal, 2018, 13(5): 577–583CrossRefGoogle Scholar
  8. 8.
    Berak J M, Sienko M J. Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. Journal of Solid State Chemistry, 1970, 2(1): 109–133CrossRefGoogle Scholar
  9. 9.
    Mi Q, Zhanaidarova A, Brunschwig B S, Gray H B, Lewis N S. A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes. Energy & Environmental Science, 2012, 5(2): 5694–5700CrossRefGoogle Scholar
  10. 10.
    Li Y, Zhang L, Liu R, Cao Z, Sun X, Liu X, Luo J. WO3@α-Fe2O3 heterojunction arrays with improved photoelectrochemical behavior for neutral pH water splitting. ChemCatChem, 2016, 8(17): 2765–2770CrossRefGoogle Scholar
  11. 11.
    Zhang T, Zhu Z, Chen H, Bai Y, Xiao S, Zheng X, Xue Q, Yang S. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. Nanoscale, 2015, 7(7): 2933–2940CrossRefGoogle Scholar
  12. 12.
    Su J, Guo L, Bao N, Grimes C A. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Letters, 2011, 11(5): 1928–1933CrossRefGoogle Scholar
  13. 13.
    Boudoire F, Toth R, Heier J, Braun A, Constable E C. Photonic light trapping in self-organized all-oxide microspheroids impacts photoelectrochemical water splitting. Energy & Environmental Science, 2014, 7(8): 2680–2688CrossRefGoogle Scholar
  14. 14.
    Solarska R, Królikowska A, Augustyński J. Silver nanoparticle induced photocurrent enhancement at WO3 photoanodes. Angewandte Chemie International Edition, 2010, 49(43): 7980–7983CrossRefGoogle Scholar
  15. 15.
    Su J, Feng X, Sloppy J D, Guo L, Grimes C A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Letters, 2011, 11(1): 203–208CrossRefGoogle Scholar
  16. 16.
    Amano F, Li D, Ohtani B. Fabrication and photoelectrochemical property of tungsten(vi) oxide films with a flake-wall structure. Chemical Communications (Cambridge, England), 2010, 46(16): 2769–2771CrossRefGoogle Scholar
  17. 17.
    Mali M G, Yoon H, Kim M, Swihart M T, Al-Deyab S S, Yoon S S. Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting. Applied Physics Letters, 2015, 106(15): 151603CrossRefGoogle Scholar
  18. 18.
    Ye L, Liu X, Zhao Q, Xie H, Zan L. Dramatic visible light photocatalytic activity of MnOx–BiOI heterogeneous photocatalysts and the selectivity of the cocatalyst. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(31): 8978–8983CrossRefGoogle Scholar
  19. 19.
    Kuang P Y, Ran J R, Liu Z Q, Wang H J, Li N, Su Y Z, Jin Y G, Qiao S Z. Enhanced photoelectrocatalytic activity of BiOI nanoplate-zinc oxide nanorod p-n heterojunction. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(43): 15360–15368Google Scholar
  20. 20.
    Park H, Bak A, Ahn Y Y, Choi J, Hoffmannn M R. Photoelectrochemical performance of multi-layered BiOx-TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water. Journal of Hazardous Materials, 2012, 211–212: 47–54CrossRefGoogle Scholar
  21. 21.
    Ye K H, Chai Z, Gu J, Yu X, Zhao C, Zhang Y, Mai W. BiOI–BiVO4 photoanodes with significantly improved solar water splitting capability: p–n junction to expand solar adsorption range and facilitate charge carrier dynamics. Nano Energy, 2015, 18: 222–231CrossRefGoogle Scholar
  22. 22.
    Shi W, Zhang X, Brillet J, Huang D, Li M, Wang M, Shen Y. Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon, 2016, 105: 387–393CrossRefGoogle Scholar
  23. 23.
    Kim T W, Choi K S. Nanoporous BiVO4 photoanodes with duallayer oxygen evolution catalysts for solar water splitting. Science, 2014, 343(6174): 990–994CrossRefGoogle Scholar
  24. 24.
    Wang J C, Yao H C, Fan Z Y, Zhang L, Wang J S, Zang S Q, Li Z J. Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Applied Materials & Interfaces, 2016, 8(6): 3765–3775CrossRefGoogle Scholar
  25. 25.
    Li W, Da P, Zhang Y, Wang Y, Lin X, Gong X, Zheng G. WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano, 2014, 8(11): 11770–11777CrossRefGoogle Scholar
  26. 26.
    Nonaka K, Takase A, Miyakawa K. Raman spectra of sol-gelderived tungsten oxides. Journal of Materials Science Letters, 1993, 12(5): 274–277CrossRefGoogle Scholar
  27. 27.
    Cui X, Zhang H, Dong X, Chen H, Zhang L, Guo L, Shi J. Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO3 and WO3/C composites. Journal of Materials Chemistry, 2008, 18(30): 3575–3580CrossRefGoogle Scholar
  28. 28.
    Sun Y, Murphy C J, Reyes-Gil K R, Reyes-Garcia E A, Thornton J M, Morris N A, Raftery D. Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis. International Journal of Hydrogen Energy, 2009, 34(20): 8476–8484CrossRefGoogle Scholar
  29. 29.
    Chang C, Zhu L, Wang S, Chu X, Yue L. Novel mesoporous graphite carbon nitride/BiOI heterojunction for enhancing photocatalytic performance under visible-light irradiation. ACS Applied Materials & Interfaces, 2014, 6(7): 5083–5093CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Pei Q, Liang J, Feng T, Zhou X, Mao H, Zhang W, Hisaeda Y, Song X M. Mesoporous TiO2-based photoanode sensitized by BiOI and investigation of its photovoltaic behavior. Langmuir, 2015, 31(37): 10279–10284CrossRefGoogle Scholar
  31. 31.
    Feng Y, Liu C, Che H, Chen J, Huang K, Huang C, Shi W. The highly improved visible light photocatalytic activity of BiOI through fabricating a novel p–n heterojunction BiOI/WO3 nanocomposite. CrystEngComm, 2016, 18(10): 1790–1799CrossRefGoogle Scholar
  32. 32.
    Hou Y, Zuo F, Dagg A P, Liu J, Feng P. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Advanced Materials, 2014, 26(29): 5043–5049CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.College of Chemistry and Chemical EngineeringXinxiang UniversityXinxiangChina

Personalised recommendations