Advertisement

Frontiers of Optoelectronics

, Volume 11, Issue 2, pp 134–147 | Cite as

On-chip frequency combs and telecommunications signal processing meet quantum optics

  • Christian Reimer
  • Yanbing Zhang
  • Piotr Roztocki
  • Stefania Sciara
  • Luis Romero Cortés
  • Mehedi Islam
  • Bennet Fischer
  • Benjamin Wetzel
  • Alfonso Carmelo Cino
  • Sai Tak Chu
  • Brent Little
  • David Moss
  • Lucia Caspani
  • José Azaña
  • Michael Kues
  • Roberto Morandotti
Review Article Invited Paper, Special Issue—Photonics Research in Canada
  • 92 Downloads

Abstract

Entangled optical quantum states are essential towards solving questions in fundamental physics and are at the heart of applications in quantum information science. For advancing the research and development of quantum technologies, practical access to the generation and manipulation of photon states carrying significant quantum resources is required. Recently, integrated photonics has become a leading platform for the compact and cost-efficient generation and processing of optical quantum states. Despite significant advances, most on-chip nonclassical light sources are still limited to basic bi-photon systems formed by two-dimensional states (i.e., qubits). An interesting approach bearing large potential is the use of the time or frequency domain to enabled the scalable onchip generation of complex states. In this manuscript, we review recent efforts in using on-chip optical frequency combs for quantum state generation and telecommunications components for their coherent control. In particular, the generation of bi- and multi-photon entangled qubit states has been demonstrated, based on a discrete time domain approach. Moreover, the on-chip generation of high-dimensional entangled states (quDits) has recently been realized, wherein the photons are created in a coherent superposition of multiple pure frequency modes. The time- and frequency-domain states formed with on-chip frequency comb sources were coherently manipulated via off-the-shelf telecommunications components. Our results suggest that microcavity-based entangled photon states and their coherent control using accessible telecommunication infrastructures can open up new venues for scalable quantum information science.

Keywords

nonlinear optics quantum optics entangled photons 

References

  1. 1.
    Lloyd S. Universal quantum simulators. Science, 1996, 273(5278): 1073–1078MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L. Quantum computers. Nature, 2010, 464(7285): 45–53CrossRefGoogle Scholar
  3. 3.
    O’Brien J L. Optical quantum computing. Science, 2007, 318(5856): 1567–1570CrossRefGoogle Scholar
  4. 4.
    Pfeifle J, Brasch V, Lauermann M, Yu Y, Wegner D, Herr T, Hartinger K, Schindler P, Li J, Hillerkuss D, Schmogrow R, Weimann C, Holzwarth R, Freude W, Leuthold J, Kippenberg T J, Koos C. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 2014, 8(5): 375–380CrossRefGoogle Scholar
  5. 5.
    Kimble H J. The quantum internet. Nature, 2008, 453(7198): 1023–1030CrossRefGoogle Scholar
  6. 6.
    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W. Experimental ten-photon entanglement. Physical Review Letters, 2016, 117(21): 210502CrossRefGoogle Scholar
  7. 7.
    Yao X C, Wang T X, Chen H Z, Gao W B, Fowler A G, Raussendorf R, Chen Z B, Liu N L, Lu C Y, Deng Y J, Chen Y A, Pan J W. Experimental demonstration of topological error correction. Nature, 2012, 482(7386): 489–494CrossRefGoogle Scholar
  8. 8.
    Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W. Experimental entanglement of six photons in graph states. Nature Physics, 2007, 3(2): 91–95CrossRefGoogle Scholar
  9. 9.
    Blatt R, Wineland D. Entangled states of trapped atomic ions. Nature, 2008, 453(7198): 1008–1015CrossRefGoogle Scholar
  10. 10.
    Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, Gambetta J M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242–246CrossRefGoogle Scholar
  11. 11.
    Kwiat P G. Hyper-entangled states. Journal of Modern Optics, 1997, 44(11–12): 2173–2184MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Barreiro J T, Langford N K, Peters N A, Kwiat P G. Generation of hyperentangled photon pairs. Physical Review Letters, 2005, 95(26): 260501CrossRefGoogle Scholar
  13. 13.
    Xie Z, Zhong T, Shrestha S, Xu X A, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N C, Wei Wong C. Harnessing high-dimensinal hyperentanglement through a biphoton frequency comb. Nature Photonics, 2015, 9(8): 536–542CrossRefGoogle Scholar
  14. 14.
    Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology. Nature, 2002, 416(6877): 233–237CrossRefGoogle Scholar
  15. 15.
    Zaidi H, Menicucci N C, Flammia S T, Bloomer R, Pysher M, Pfister O. Entangling the optical frequency comb: Simultaneous generation of multiple 2 × 2 and 2 × 3 continuous-variable cluster states in a single optical parametric oscillator. Laser Physics, 2008, 18(5): 659–666CrossRefGoogle Scholar
  16. 16.
    Roslund J, de Araújo R M, Jiang S, Fabre C, Treps N. Wavelengthmultiplexed quantum networks with ultrafast frequency combs. Nature Photonics, 2014, 8(2): 109–112CrossRefGoogle Scholar
  17. 17.
    Reimer C, Caspani L, Clerici M, Ferrera M, Kues M, Peccianti M, Pasquazi A, Razzari L, Little B E, Chu S T, Moss D J, Morandotti R. Integrated frequency comb source of heralded single photons. Optics Express, 2014, 22(6): 6535–6546CrossRefGoogle Scholar
  18. 18.
    Harris N C, Grassani D, Simbula A, Pant M, Galli M, Baehr-Jones T, Hochberg M, Englund D, Bajoni D, Galland C. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Physical Review X, 2014, 4(4): 041047CrossRefGoogle Scholar
  19. 19.
    Azzini S, Grassani D, Strain M J, Sorel M, Helt L G, Sipe J E, Liscidini M, Galli M, Bajoni D. Ultra-low power generation of twin photons in a compact silicon ring resonator. Optics Express, 2012, 20(21): 23100–23107CrossRefGoogle Scholar
  20. 20.
    Reimer C, Kues M, Caspani L, Wetzel B, Roztocki P, Clerici M, Jestin Y, Ferrera M, Peccianti M, Pasquazi A, Little B E, Chu S T, Moss D J, Morandotti R. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nature Communications, 2015, 6(1): 8236CrossRefGoogle Scholar
  21. 21.
    Caspani L, Xiong C, Eggleton B J, Bajoni D, Liscidini M, Galli M, Morandotti R, Moss D J. Integrated sources of photon quantum states based on nonlinear optics. Light, Science & Applications, 2017, 6(11): e17100CrossRefGoogle Scholar
  22. 22.
    Reimer C, Kues M, Roztocki P, Wetzel B, Grazioso F, Little B E, Chu S T, Johnston T, Bromberg Y, Caspani L, Moss D J, Morandotti R. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 2016, 351(6278): 1176–1180CrossRefGoogle Scholar
  23. 23.
    Mazeas F, Traetta M, Bentivegna M, Kaiser F, Aktas D, Zhang W, Ramos C A, Ngah L A, Lunghi T, Picholle É, Belabas-Plougonven N, Le Roux X, Cassan É, Marris-Morini D, Vivien L, Sauder G, Labonté L, Tanzilli S. High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip. Optics Express, 2016, 24(25): 28731–28738CrossRefGoogle Scholar
  24. 24.
    Jaramillo-Villegas J A, Imany P, Odele O D, Leaird D E, Ou Z Y, Qi M, Weiner A M. Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb. Optica, 2017, 4(6): 655–658CrossRefGoogle Scholar
  25. 25.
    Grassani D, Azzini S, Liscidini M, Galli M, Strain M J, Sorel M, Sipe J E, Bajoni D. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2015, 2(2): 88–94CrossRefGoogle Scholar
  26. 26.
    Silverstone J W, Santagati R, Bonneau D, Strain M J, Sorel M, O’Brien J L, Thompson M G. Qubit entanglement between ringresonator photon-pair sources on a silicon chip. Nature Communications, 2015, 6(1): 7948CrossRefGoogle Scholar
  27. 27.
    Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546(7660): 622–626CrossRefGoogle Scholar
  28. 28.
    Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J, Yonezawa H, Menicucci N C, Furusawa A. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nature Photonics, 2013, 7(12): 982–986CrossRefGoogle Scholar
  29. 29.
    Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Physical Review Letters, 2011, 107(3): 030505CrossRefGoogle Scholar
  30. 30.
    Chen M, Menicucci N C, Pfister O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Physical Review Letters, 2014, 112(12): 120505CrossRefGoogle Scholar
  31. 31.
    Lukens J M, Lougovski P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica, 2017, 4(1): 8–16CrossRefGoogle Scholar
  32. 32.
    Gerke S, Sperling J, Vogel W, Cai Y, Roslund J, Treps N, Fabre C. Full multipartite entanglement of frequency-comb Gaussian states. Physical Review Letters, 2015, 114(5): 050501CrossRefGoogle Scholar
  33. 33.
    Menicucci N C. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Physical Review Letters, 2014, 112(12): 120504CrossRefGoogle Scholar
  34. 34.
    Bonneau D, Silverstone J W, Thompson M G. In: Pavesi L, Lockwood D J, eds. Silicon Photonics III. Heidelberg: Springer, 2016, 41–82Google Scholar
  35. 35.
    Tanzilli S, Martin A, Kaiser F, De Micheli M P, Alibart O, Ostrowsky D B. On the genesis and evolution of integrated quantum optics. Laser & Photonics Reviews, 2012, 6(1): 115–143CrossRefGoogle Scholar
  36. 36.
    Sharping J E, Lee K F, Foster M A, Turner A C, Schmidt B S, Lipson M, Gaeta A L, Kumar P. Generation of correlated photons in nanoscale silicon waveguides. Optics Express, 2006, 14(25): 12388–12393CrossRefGoogle Scholar
  37. 37.
    Engin E, Bonneau D, Natarajan C M, Clark A S, Tanner M G, Hadfield R H, Dorenbos S N, Zwiller V, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, O’Brien J L, Thompson M G. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Optics Express, 2013, 21(23): 27826–27834CrossRefGoogle Scholar
  38. 38.
    Horn R T, Kolenderski P, Kang D, Abolghasem P, Scarcella C, Frera A D, Tosi A, Helt L G, Zhukovsky S V, Sipe J E, Weihs G, Helmy A S, Jennewein T. Inherent polarization entanglement generated from a monolithic semiconductor chip. Scientific Reports, 2013, 3(1): 2314CrossRefGoogle Scholar
  39. 39.
    Carolan J, Harrold C, Sparrow C, Martín-López E, Russell N J, Silverstone J W, Shadbolt P J, Matsuda N, Oguma M, Itoh M, Marshall G D, Thompson M G, Matthews J C, Hashimoto T, O’Brien J L, Laing A. Universal linear optics. Science, 2015, 349(6249): 711–716MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Politi A, Matthews J C F, O’Brien J L. Shor’s quantum factoring algorithm on a photonic chip. Science, 2009, 325(5945): 1221MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Spring J B, Metcalf B J, Humphreys P C, Kolthammer W S, Jin X M, Barbieri M, Datta A, Thomas-Peter N, Langford N K, Kundys D, Gates J C, Smith B J, Smith P G, Walmsley I A. Boson sampling on a photonic chip. Science, 2013, 339(6121): 798–801CrossRefGoogle Scholar
  42. 42.
    Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555–559CrossRefGoogle Scholar
  43. 43.
    Pasquazi A, Peccianti M, Razzari L, Moss D J, Coen S, Erkintalo M, Chembo Y K, Hansson T, Wabnitz S, Del’Haye P, Xue X, Weiner A M, Morandotti R. Micro-combs: a novel generation of optical sources. Physics Reports, 2018, 729: 1–81MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Jiang W C, Lu X, Zhang J, Painter O, Lin Q. Silicon-chip source of bright photon pairs. Optics Express, 2015, 23(16): 20884–20904CrossRefGoogle Scholar
  45. 45.
    Hemsley E, Bonneau D, Pelc J, Beausoleil R, O’Brien J L, Thompson M G. Photon pair generation in hydrogenated amorphous silicon microring resonators. Scientific Reports, 2016, 6(1): 38908CrossRefGoogle Scholar
  46. 46.
    Carmon T, Yang L, Vahala K. Dynamical thermal behavior and thermal self-stability of microcavities. Optics Express, 2004, 12(20): 4742–4750CrossRefGoogle Scholar
  47. 47.
    Roztocki P, Kues M, Reimer C, Wetzel B, Sciara S, Zhang Y, Cino A, Little B E, Chu S T, Moss D J, Morandotti R. Practical system for the generation of pulsed quantum frequency combs. Optics Express, 2017, 25(16): 18940–18949CrossRefGoogle Scholar
  48. 48.
    Moss D J, Morandotti R, Gaeta A L, Lipson M. New CMOScompatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature Photonics, 2013, 7(8): 597–607CrossRefGoogle Scholar
  49. 49.
    Caspani L, Reimer C, Kues M, Roztocki P, Clerici M, Wetzel B, Jestin Y, Ferrera M, Peccianti M, Pasquazi A, Razzari L, Little B E, Chu S T, Moss D J, Morandotti R. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs. Nanophotonics, 2016, 5(2): 351–362CrossRefGoogle Scholar
  50. 50.
    Caspani L, Xiong C, Eggleton B J, Bajoni D, Liscidini M, Galli M, Morandotti R, Moss D J. Integrated sources of photon quantum states based on nonlinear optics. Light: Science & Applications, 2017, 6: e17100Google Scholar
  51. 51.
    Imany P, Jaramillo-Villegas J A, Odele O D, Han K, Leaird D E, Lukens J M, Lougovski P, Qi M, Weiner A M. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Optics Express, 2018, 26(2): 1825–1840CrossRefGoogle Scholar
  52. 52.
    Lu H H, Lukens J M, Peters N A, Odele O D, Leaird D E, Weiner A M, Lougovski P. Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Physical Review Letters, 2018, 120(3): 030502CrossRefGoogle Scholar
  53. 53.
    Lu H H, Lukens J M, Peters N A, Williams B P, Weiner A M, Lougovski P. Controllable two-photon interference with versatile quantum frequency processor. arXiv preprint arXiv:1803.10712 (2018)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Christian Reimer
    • 1
  • Yanbing Zhang
    • 1
  • Piotr Roztocki
    • 1
  • Stefania Sciara
    • 1
    • 2
  • Luis Romero Cortés
    • 1
  • Mehedi Islam
    • 1
  • Bennet Fischer
    • 1
  • Benjamin Wetzel
    • 3
  • Alfonso Carmelo Cino
    • 2
  • Sai Tak Chu
    • 4
  • Brent Little
    • 5
  • David Moss
    • 6
  • Lucia Caspani
    • 7
  • José Azaña
    • 1
  • Michael Kues
    • 1
    • 8
  • Roberto Morandotti
    • 1
    • 9
    • 10
  1. 1.Institut National de la Recherche Scientifique – Centre Énergie, Matériaux et Télécommunications (INRS-EMT)VarennesCanada
  2. 2.Department of Energy, Information Engineering and Mathematical ModelsUniversity of PalermoPalermoItaly
  3. 3.Department of Physics & AstronomyUniversity of SussexFalmer, BrightonUK
  4. 4.Department of Physics and Material ScienceCity University of Hong KongHong KongChina
  5. 5.State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision MechanicsChinese Academy of SciencesXi’anChina
  6. 6.Centre for Micro PhotonicsSwinburne University of TechnologyHawthorn, VictoriaAustralia
  7. 7.Institute of Photonics, Department of PhysicsUniversity of StrathclydeGlasgowUK
  8. 8.School of EngineeringUniversity of GlasgowGlasgowUK
  9. 9.Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
  10. 10.National Research University of Information Technologies, Mechanics and OpticsSt PetersburgRussia

Personalised recommendations