Advertisement

Frontiers of Optoelectronics

, Volume 11, Issue 2, pp 163–188 | Cite as

Optical signal processing based on silicon photonics waveguide Bragg gratings: review

  • Saket Kaushal
  • Rui Cheng
  • Minglei Ma
  • Ajay Mistry
  • Maurizio Burla
  • Lukas Chrostowski
  • José Azaña
Review Article Invited Paper, Special Issue—Photonics Research in Canada
  • 99 Downloads

Abstract

This paper reviews the work done by researchers at INRS and UBC in the field of integrated microwave photonics (IMWPs) using silicon based waveguide Bragg gratings (WBGs). The grating design methodology is discussed in detail, including practical device fabrication considerations. On-chip implementations of various fundamental photonic signal processing units, including Fourier transformers, Hilbert transformers, ultrafast pulse shapers etc., are reviewed. Recent progress on WBGs-based IMWP subsystems, such as true time delay elements, phase shifters, real time frequency identification systems, is also discussed.

Keywords

silicon photonics ultrafast optical signal processing integrated microwave photonics (IMWPs) 

References

  1. 1.
    Koenig S, Lopez-Diaz D, Antes J, Boes F, Henneberger R, Leuther A, Tessmann A, Schmogrow R, Hillerkuss D, Palmer R, Zwick T, Koos C, Freude W, Ambacher O, Leuthold J, Kallfass I. Wireless sub-THz communication system with high data rate. Nature Photonics, 2013, 7(12): 977–981CrossRefGoogle Scholar
  2. 2.
    Eyre J, Bier J. The evolution of DSP processors. IEEE Signal Processing Magazine, 2000, 17(2): 43–51CrossRefGoogle Scholar
  3. 3.
    Kuo S M, Lee B H, Tian W. Real-time Digital Signal Processing: Fundamentals, Implementations and Applications. New York: John Wiley & Sons, 2013Google Scholar
  4. 4.
    Seeds A J, Shams H, Fice M J, Renaud C C. Terahertz photonics for wireless communications. Journal of Lightwave Technology, 2015, 33(3): 579–587CrossRefGoogle Scholar
  5. 5.
    Nagatsuma T, Horiguchi S, Minamikata Y, Yoshimizu Y, Hisatake S, Kuwano S, Yoshimoto N, Terada J, Takahashi H. Terahertz wireless communications based on photonics technologies. Optics Express, 2013, 21(20): 23736–23747CrossRefGoogle Scholar
  6. 6.
    Seeds A J. Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 877–887CrossRefGoogle Scholar
  7. 7.
    Iezekiel S. Microwave Photonics: Devices and Applications. New York: John Wiley & Sons, 2009CrossRefGoogle Scholar
  8. 8.
    Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330CrossRefGoogle Scholar
  9. 9.
    Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335MathSciNetCrossRefGoogle Scholar
  10. 10.
    Marpaung D, Roeloffzen C, Heideman R, Leinse A, Sales S, Capmany J. Integrated microwave photonics. Laser & Photonics Reviews, 2013, 7(4): 506–538CrossRefGoogle Scholar
  11. 11.
    Roeloffzen C G, Zhuang L, Taddei C, Leinse A, Heideman R G, van Dijk P W, Oldenbeuving R M, Marpaung D A, Burla M, Boller K J. Silicon nitride microwave photonic circuits. Optics Express, 2013, 21(19): 22937–22961CrossRefGoogle Scholar
  12. 12.
    Zhang W, Yao J. Silicon-based integrated microwave photonics. IEEE Journal of Quantum Electronics, 2016, 52: 1–12Google Scholar
  13. 13.
    Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon Microring Resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73CrossRefGoogle Scholar
  14. 14.
    Chrostowski L, Hochberg M. Silicon Photonics Design: From Devices to Systems. Cambridge: Cambridge University Press, 2015CrossRefGoogle Scholar
  15. 15.
    Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 1997, 15(8): 1263–1276CrossRefGoogle Scholar
  16. 16.
    Bazargani H P, Burla M, Chrostowski L, Azaña J. Photonic Hilbert transformers based on laterally apodized integrated waveguide Bragg gratings on a SOI wafer. Optics Letters, 2016, 41(21): 5039–5042CrossRefGoogle Scholar
  17. 17.
    Burla M, Wang X, Li M, Chrostowski L, Azaña J. Wideband dynamic microwave frequency identification system using a lowpower ultracompact silicon photonic chip. Nature Communications, 2016, 7: 13004CrossRefGoogle Scholar
  18. 18.
    Burla M, Li M, Cortés L R, Wang X, Fernández-Ruiz M R, Chrostowski L, Azaña J. Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon. Optics Letters, 2014, 39(21): 6241–6244CrossRefGoogle Scholar
  19. 19.
    Burla M, Cortés L R, Li M, Wang X, Chrostowski L, Azaña J. Onchip programmable ultra-wideband microwave photonic phase shifter and true time delay unit. Optics Letters, 2014, 39(21): 6181–6184CrossRefGoogle Scholar
  20. 20.
    Burla M, Cortés L R, Li M, Wang X, Chrostowski L, Azaña J. Integrated waveguide Bragg gratings for microwave photonics signal processing. Optics Express, 2013, 21(21): 25120–25147CrossRefGoogle Scholar
  21. 21.
    Dolgaleva K, Malacarne A, Tannouri P, Fernandes L A, Grenier J R, Aitchison J S, Azaña J, Morandotti R, Herman P R, Marques P V. Integrated optical temporal Fourier transformer based on a chirped Bragg grating waveguide. Optics Letters, 2011, 36(22): 4416–4418CrossRefGoogle Scholar
  22. 22.
    Rutkowska K A, Duchesne D, Strain M J, Morandotti R, Sorel M, Azaña J. Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings. Optics Express, 2011, 19(20): 19514–19522CrossRefGoogle Scholar
  23. 23.
    Bogaerts W, Selvaraja S K, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33–44CrossRefGoogle Scholar
  24. 24.
    Othonos A. Fiber Bragg gratings. Review of Scientific Instruments, 1997, 68(12): 4309–4341CrossRefGoogle Scholar
  25. 25.
    Vivien L, Osmond J, Fédéli J M, Marris-Morini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y, Laval S. 42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide. Optics Express, 2009, 17(8): 6252–6257CrossRefGoogle Scholar
  26. 26.
    Skaar J. Synthesis and Characterization of Fiber Bragg Gratings. Dissertation for the Doctoral Degree. Trondheim, Norway: Norwegian University of Science and Technology, 2000Google Scholar
  27. 27.
    Sima C, Gates J C, Holmes C, Mennea P L, Zervas M N, Smith P G. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication. Optics Letters, 2013, 38(17): 3448–3451CrossRefGoogle Scholar
  28. 28.
    Simard A D, Strain M J, Meriggi L, Sorel M, LaRochelle S. Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses. Optics Letters, 2015, 40(5): 736–739CrossRefGoogle Scholar
  29. 29.
    Li M, Yao J. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Optics Letters, 2010, 35(2): 223–225CrossRefGoogle Scholar
  30. 30.
    Simard A D, Belhadj N, Painchaud Y, LaRochelle S. Apodized silicon-on-insulator Bragg gratings. IEEE Photonics Technology Letters, 2012, 24(12): 1033–1035CrossRefGoogle Scholar
  31. 31.
    Wiesmann D, David C, Germann R, Emi D, Bona G. Apodized surface-corrugated gratings with varying duty cycles. IEEE Photonics Technology Letters, 2000, 12(6): 639–641CrossRefGoogle Scholar
  32. 32.
    Tan D T, Ikeda K, Fainman Y. Cladding-modulated Bragg gratings in silicon waveguides. Optics Letters, 2009, 34(9): 1357–1359CrossRefGoogle Scholar
  33. 33.
    Hung Y J, Lin K H, Wu C J, Wang C Y, Chen Y J. Narrowband reflection from weakly coupled cladding-modulated Bragg gratings. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 218–224CrossRefGoogle Scholar
  34. 34.
    Wang X, Wang Y, Flueckiger J, Bojko R, Liu A, Reid A, Pond J, Jaeger N A, Chrostowski L. Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings. Optics Letters, 2014, 39(19): 5519–5522CrossRefGoogle Scholar
  35. 35.
    Cheng R, Chrostowski L. Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings. Optics Letters, 2018, 43(5): 1031–1034CrossRefGoogle Scholar
  36. 36.
    Agrawal G P, Radic S. Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing. IEEE Photonics Technology Letters, 1994, 6(8): 995–997CrossRefGoogle Scholar
  37. 37.
    Katsidis C C, Siapkas D I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Applied Optics, 2002, 41(19): 3978–3987CrossRefGoogle Scholar
  38. 38.
    Stoll H, Yariv A. Coupled-mode analysis of periodic dielectric waveguides. Optics Communications, 1973, 8(1): 5–8CrossRefGoogle Scholar
  39. 39.
    Yariv A. Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics, 1973, 9(9): 919–933CrossRefGoogle Scholar
  40. 40.
    Streifer W, Scifres D, Burnham R. Coupling coefficients for distributed feedback single-and double-heterostructure diode lasers. IEEE Journal of Quantum Electronics, 1975, 11(11): 867–873CrossRefGoogle Scholar
  41. 41.
    Zhang Y, Holzwarth N, Williams R. Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4. Physical Review B: Condensed Matter and Materials Physics, 1998, 57(20): 12738–12750CrossRefGoogle Scholar
  42. 42.
    Lumerical FDTD, 2018Google Scholar
  43. 43.
    Pendry J. Photonic band structures. Journal of Modern Optics, 1994, 41(2): 209–229CrossRefGoogle Scholar
  44. 44.
    Li Z Y, Lin L L. Photonic band structures solved by a plane-wavebased transfer-matrix method. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2003, 67(4 Pt 2): 046607CrossRefGoogle Scholar
  45. 45.
    Applied Nanotools Inc., 2018Google Scholar
  46. 46.
    Simard A D, Beaudin G, Aimez V, Painchaud Y, Larochelle S. Characterization and reduction of spectral distortions in silicon-oninsulator integrated Bragg gratings. Optics Express, 2013, 21(20): 23145–23159CrossRefGoogle Scholar
  47. 47.
    Ayotte N, Simard A D, LaRochelle S. Long integrated Bragg gratings for SOI wafer metrology. IEEE Photonics Technology Letters, 2015, 27(7): 755–758CrossRefGoogle Scholar
  48. 48.
    Simard A D, Painchaud Y, LaRochelle S. Integrated Bragg gratings in spiral waveguides. Optics Express, 2013, 21(7): 8953–8963CrossRefGoogle Scholar
  49. 49.
    Wang X, Yun H, Chrostowski L. Integrated Bragg gratings in spiral waveguides. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO). San Jose, California: OSA, 2013, CTh4F.8Google Scholar
  50. 50.
    Ma M, Chen Z, Yun H, Wang Y, Wang X, Jaeger N A F, Chrostowski L. Apodized spiral Bragg grating waveguides in silicon-on-insulator. IEEE Photonics Technology Letters, 2018, 30(1): 111–114CrossRefGoogle Scholar
  51. 51.
    Simard A D, Ayotte N, Painchaud Y, Bedard S, LaRochelle S. Impact of sidewall roughness on integrated Bragg gratings. Journal of Lightwave Technology, 2011, 29(24): 3693–3704CrossRefGoogle Scholar
  52. 52.
    Azaña J, Muriel M A. Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings. IEEE Journal of Quantum Electronics, 2000, 36(5): 517–526CrossRefGoogle Scholar
  53. 53.
    Azaña J, Berger N K, Levit B, Fischer B. Spectral Fraunhofer regime: time-to-frequency conversion by the action of a single time lens on an optical pulse. Applied Optics, 2004, 43(2): 483–490CrossRefGoogle Scholar
  54. 54.
    Yariv A, Yeh P. Photonics: Optical Electronics in Modern Communications. Oxford: Oxford University Press, 2006Google Scholar
  55. 55.
    Tong Y, Chan L, Tsang H. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope. Electronics Letters, 1997, 33(11): 983–985CrossRefGoogle Scholar
  56. 56.
    Muriel M A, Azaña J, Carballar A. Real-time Fourier transformer based on fiber gratings. Optics Letters, 1999, 24(1): 1–3CrossRefGoogle Scholar
  57. 57.
    Coppinger F, Bhushan A, Jalali B. Photonic time stretch and its application to analog-to-digital conversion. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7): 1309–1314CrossRefGoogle Scholar
  58. 58.
    Chou J, Han Y, Jalali B. Adaptive RF-photonic arbitrary waveform generator. IEEE Photonics Technology Letters, 2003, 15(4): 581–583CrossRefGoogle Scholar
  59. 59.
    Solli D, Chou J, Jalali B. Amplified wavelength–time transformation for real-time spectroscopy. Nature Photonics, 2008, 2(1): 48–51CrossRefGoogle Scholar
  60. 60.
    Ouellette F. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Optics Letters, 1987, 12(10): 847–849CrossRefGoogle Scholar
  61. 61.
    Lepetit L, Chériaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. Journal of the Optical Society of America B, 1995, 12(12): 2467–2474CrossRefGoogle Scholar
  62. 62.
    Weiner A. Ultrafast Optics, volume 72. New York: John Wiley & Sons, 2011Google Scholar
  63. 63.
    Rivas L M, Strain M J, Duchesne D, Carballar A, Sorel M, Morandotti R, Azaña J. Picosecond linear optical pulse shapers based on integrated waveguide Bragg gratings. Optics Letters, 2008, 33(21): 2425–2427CrossRefGoogle Scholar
  64. 64.
    Ashrafi R, Li M, Belhadj N, Dastmalchi M, LaRochelle S, Azaña J. Experimental demonstration of superluminal space-to-time mapping in long period gratings. Optics Letters, 2013, 38(9): 1419–1421CrossRefGoogle Scholar
  65. 65.
    Li M, Dumais P, Ashrafi R, Bazargani H P, Quelene J B, Callender C, Azaña J. Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach–Zehnder interferometers. IEEE Photonics Technology Letters, 2012, 24(16): 1387–1389CrossRefGoogle Scholar
  66. 66.
    Bazargani H P, Burla M, Azaña J. Experimental demonstration of sub-picosecond optical pulse shaping in silicon based on discrete space-to-time mapping. Optics Letters, 2015, 40(23): 5423–5426CrossRefGoogle Scholar
  67. 67.
    Bazargani H P, Azaña J. Optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers. Optics Express, 2015, 23(18): 23450–23461CrossRefGoogle Scholar
  68. 68.
    Bazargani H, Burla M, Chen Z, Zhang F, Chrostowski L, Azaña J. Long-duration optical pulse shaping and complex coding on SOI. IEEE Photonics Journal, 2016, 8(4): 1–7CrossRefGoogle Scholar
  69. 69.
    Deng N, Liu Z, Wang X, Fu T, Xie W, Dong Y. Distribution of a phase-stabilized 100.02 GHz millimeter-wave signal over a 160 km optical fiber with 4.1 × 10–17 instability. Optics Express, 2018, 26(1): 339–346CrossRefGoogle Scholar
  70. 70.
    Liu Y, Marpaung D, Choudhary A, Eggleton B J. Highly selective and reconfigurable Si3N4 RF photonic notch filter with negligible RF losses. In: Proceedings of Lasers and Electro-Optics (CLEO). San Jose, CA, USA: IEEE, 2017, paper SM1O.7Google Scholar
  71. 71.
    Fandiño J S, Muñoz P, Doménech D, Capmany J. A monolithic integrated photonic microwave filter. Nature Photonics, 2017, 11(2): 124–129CrossRefGoogle Scholar
  72. 72.
    Zhuang L, Roeloffzen C G, Hoekman M, Boller K J, Lowery A J. Programmable photonic signal processor chip for radio frequency applications. Optica, 2015, 2(10): 854–859CrossRefGoogle Scholar
  73. 73.
    Capmany J, Gasulla I, Pérez D. The programmable processor. Nature Photonics, 2016, 10: 6–8CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Saket Kaushal
    • 1
  • Rui Cheng
    • 2
  • Minglei Ma
    • 2
  • Ajay Mistry
    • 2
  • Maurizio Burla
    • 1
    • 3
  • Lukas Chrostowski
    • 2
  • José Azaña
    • 1
  1. 1.Institut National de la Recherche Scientifique – Centre Energie, Matériaux et Télécommunications (INRS-EMT)VarennesCanada
  2. 2.Department of Electrical and Computer EngineeringUniversity of British Columbia (UBC)VancouverCanada
  3. 3.Institute of Electromagnetic FieldsETH ZurichZurichSwitzerland

Personalised recommendations