Frontiers of Optoelectronics

, Volume 11, Issue 2, pp 155–162 | Cite as

Fiber transmission demonstrations in vector mode space division multiplexing

  • Leslie A. RuschEmail author
  • Sophie Larochelle
Review Article Invited Paper, Special Issue—Photonics Research in Canada


Much attention has been focused on the use of scalar modes for space division multiplexing (SDM). Alternative vector mode bases offer another solution set for SDM, expanding the available trade-offs in system performance and complexity. We present two types of ring core fiber conceived and designed to explore SDM with fibers exhibiting low interactions between supported modes. We review demonstrations of fiber data transmission for two separate vector mode bases: one for orbital angular momentum (OAM) modes and one for linearly polarized vector (LPV) modes. The OAM mode demonstrations include short transmissions using commercially available transceivers, as well as kilometer length transmission at extended data rates. The LPV demonstrations span kilometer length transmissions at high data rate with coherent detection, as well as a radio over fiber experiment with direct detection of narrowband signals.


space division multiplexing (SDM) fewmode fiber (FMF) orbital angular momentum (OAM) linearly polarized vector (LPV) modes ring core fiber (RCF) polarization maintaining fiber 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362CrossRefGoogle Scholar
  2. 2.
    Marom D M, Colbourne P D, D’Errico A, Fontaine N K, Ikuma Y, Proietti R, Zong L, Rivas-Moscoso J M, Tomkos I. Survey of photonic switching architectures and technologies in support of spatially and spectrally flexible optical networking. Journal of Optical Communications and Networking, 2017, 9(1): 1–26CrossRefGoogle Scholar
  3. 3.
    Fontaine N K, Ryf R, Chen H, Benitez A V, Guan B, Scott R, Ercan B, Yoo S J B, Grüner-Nielsen L E, Sun Y, Lingle R, Antonio-Lopez E, Amezcua-Correa R. 30×30 MIMO transmission over 15 spatial modes. In: Proceedings of Optical Fiber Communication Conference Post Deadline Papers. Los Angeles, California: OSA Publishing, 2015, Th5C.1Google Scholar
  4. 4.
    Huang B, Fontaine N K, Ryf R, Guan B, Leon-Saval S G, Shubochkin R, Sun Y, Lingle R Jr, Li G. All-fiber mode-groupselective photonic lantern using graded-index multimode fibers. Optics Express, 2015, 23(1): 224–234CrossRefGoogle Scholar
  5. 5.
    Arik S O, Askarov D, Kahn J M. MIMO DSP Complexity in modedivision multiplexing. In: Proceedings of Optical Fiber Communication Conference. Los Angeles, California: OSA Publishing, 2015, Th1D.1Google Scholar
  6. 6.
    Brunet C, Ung B, Wang L, Messaddeq Y, LaRochelle S, Rusch L A. Design of a family of ring-core fibers for OAM transmission studies. Optics Express, 2015, 23(8): 10553–10563CrossRefGoogle Scholar
  7. 7.
    Ung B, Vaity P, Wang L, Messaddeq Y, Rusch L A, LaRochelle S. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Optics Express, 2014, 22(15): 18044–18055CrossRefGoogle Scholar
  8. 8.
    Brunet C, Vaity P, Messaddeq Y, LaRochelle S, Rusch L A. Design, fabrication and validation of an OAM fiber supporting 36 states. Optics Express, 2014, 22(21): 26117–26127CrossRefGoogle Scholar
  9. 9.
    Wang L, Nejad R M, Corsi A, Lin J, Messaddeq Y, Rusch L, LaRochelle S. Linearly polarized vector modes: enabling MIMOfree mode-division multiplexing. Optics Express, 2017, 25(10): 11736–11749CrossRefGoogle Scholar
  10. 10.
    Antonelli C, Mecozzi A, Shtaif M, Winzer P J. Random coupling between groups of degenerate fiber modes in mode multiplexed transmission. Optics Express, 2013, 21(8): 9484–9490CrossRefGoogle Scholar
  11. 11.
    Liang J, Mo Q, Fu S, Tang M, Shum P, Liu D. Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission. Optics Letters, 2016, 41(13): 3058–3061CrossRefGoogle Scholar
  12. 12.
    Wang L, LaRochelle S. Design of eight-mode polarizationmaintaining few-mode fiber for multiple-input multiple-outputfree spatial division multiplexing. Optics Letters, 2015, 40(24): 5846–5849CrossRefGoogle Scholar
  13. 13.
    Zhao J, Tang M, Oh K, Feng Z, Zhao C, Liao R, Fu S, Shum P P, Liu D. Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core. Photonics Research, 2017, 5(3): 261–266CrossRefGoogle Scholar
  14. 14.
    Wang L, Vaity P, Ung B, Messaddeq Y, Rusch L A, LaRochelle S. Characterization of OAM fibers using fiber Bragg gratings. Optics Express, 2014, 22(13): 15653–15661CrossRefGoogle Scholar
  15. 15.
    Nejad M R, Wang L, Lin J, LaRochelle S, Rusch L A. The impact of modal interactions on receiver complexity in OAM fibers. Journal of Lightwave Technology, 2017, 35(21): 4692–4699CrossRefGoogle Scholar
  16. 16.
    Rusch L A, Rad M M, Allahverdyan K, Fazal I, Bernier E. Carrying data on the orbital angular momentum of light. IEEE Communications Magazine, 2018, 56(2): 219–224CrossRefGoogle Scholar
  17. 17.
    Nejad R M, Allahverdyan K, Vaity P, Amiralizadeh S, Brunet C, Messaddeq Y, LaRochelle S, Rusch L A. Mode division multiplexing using orbital angular momentum modes over 1.4 km ring core fiber. Journal of Lightwave Technology, 2016, 34(18): 4252–4258CrossRefGoogle Scholar
  18. 18.
    Parmigiani F, Jung Y, Gruner-Nielsen L, Geisler T, Petropoulos P, Richardson D J. Elliptical core few mode fibers for multiple-input multiple output-free space division multiplexing transmission. IEEE Photonics Technology Letters, 2017, 29(21): 1764–1767CrossRefGoogle Scholar
  19. 19.
    Mirzaei Nejad R, Tavakoli F, Wang L, Guan X, LaRochelle S, Rusch L A. Four-channel RoF transmission over polarization maintaining elliptical ring core fiber. In: Proceedings of IEEE/OSA Optical Fiber Communications Conference (OFC 2018). San Diego, California: OSA Publishing, 2018, p.M4J.6Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Optics, Photonics and Lasers, ECE DepartmentUniversité LavalQuebecCanada

Personalised recommendations