Frontiers of Optoelectronics

, Volume 11, Issue 2, pp 116–127 | Cite as

Toward the implementation of a universal angle-based optical indoor positioning system

  • Mark H. Bergen
  • Ferdinand S. Schaal
  • Richard Klukas
  • Julian Cheng
  • Jonathan F. Holzman
Research Article Invited Paper, Special Issue—Photonics Research in Canada


There is an emerging market today for indoor positioning systems capable of working alongside global navigation satellite systems, such as the global positioning system, in indoor environments. Many systems have been proposed in the literature but all of them have fundamental flaws that hold them back from widescale implementation. We review angle-of-arrival (AOA) and angle-difference-of-arrival (ADOA) optical indoor positioning systems which have been proven to be robust, accurate, and easily implementable. We build an AOA/ADOA optical indoor positioning system out of a simple commercial high-speed camera and white light light emitting diodes (LEDs) which operate over a working area of 1 m3, and compare its performance to other indoor positioning methods. The AOA and ADOA systems achieve positioning with low errors of 1.2 and 3.7 cm, respectively.


angle-of-arrival (AOA) angle-difference-of-arrival (ADOA) indoor positioning optical positioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported in part by the Natural Science and Engineering Research Council of Canada, the Canadian Foundation for Innovation, and Western Economic Diversification Canada.


  1. 1.
    Leveson I. The economic value of GPS: preliminary assessment. Leveson Consulting. 2015, Google Scholar
  2. 2.
    Global Positioning System Standard Positioning Service Performance Standard. 4 ed, 2008Google Scholar
  3. 3.
    Liu H, Darabi H, Banerjee P, Liu J. Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man and Cybernetics, Part C, Applications and Reviews, 2007, 37(6): 1067–1080CrossRefGoogle Scholar
  4. 4.
    Luo J, Fan L, Li H. Indoor positioning systems based on visible light communication: state of the art. IEEE Communications Surveys and Tutorials, 2017, 19(4): 2871–2893CrossRefGoogle Scholar
  5. 5.
    Zhang X, Duan J, Fu Y, Shi A. Theoretical accuracy analysis of indoor visible light communication positioning system based on received signal strength indicator. Journal of Lightwave Technology, 2014, 32(21): 4180–4186CrossRefGoogle Scholar
  6. 6.
    Kim Y, Hwang J, Lee J, Yoo M. Position estimation algorithm based on tracking of received light intensity for indoor visible light communication systems. In: Proceedings of International Conference on Ubiquitous & Future Networks. Dalian, China: IEEE, 2011, 131–134Google Scholar
  7. 7.
    Jung S Y, Hann S, Park S, Park C S. Optical wireless indoor positioning system using light emitting diode ceiling lights. Microwave and Optical Technology Letters, 2012, 54(7): 1622–1626CrossRefGoogle Scholar
  8. 8.
    Ma R, Guo Q, Hu C, Xue J. An improved WiFi indoor positioning algorithm by weighted fusion. Sensors (Basel), 2015, 15(9): 21824–21843CrossRefGoogle Scholar
  9. 9.
    Taniuchi D, Liu X, Nakai D, Maekawa T. Spring model based collaborative indoor position estimation with neighbor mobile devices. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(2): 268–277CrossRefGoogle Scholar
  10. 10.
    Lim J. Ubiquitous 3D positioning systems by led-based visible light communications. IEEEWireless Communications, 2015, 22(2): 80–85CrossRefGoogle Scholar
  11. 11.
    Gu W J, Aminikashani M, Deng P, Kavehrad M. Impact of multipath reflections on the performance of indoor visible light positioning systems. Journal of Lightwave Technology, 2016, 34(10): 2578–2587CrossRefGoogle Scholar
  12. 12.
    Rahaim M, Prince G B, Little T D C. State estimation and motion tracking for spatially diverse VLC networks. In: Proceedings of IEEE Globecom Workshops (GC Wkshps). Anaheim, CA, USA: IEEE, 2012, 1249–1253Google Scholar
  13. 13.
    Jung S Y, Hann S, Park C S. TDOA-based optical wireless indoor localization using LED ceiling lamps. IEEE Transactions on Consumer Electronics, 2011, 57(4): 1592–1597CrossRefGoogle Scholar
  14. 14.
    De Angelis A, Moschitta A, Carbone P, Calderini M, Neri S, Borgna R, Peppucci M. Design and characterization of a portable ultrasonic indoor 3-D positioning system. IEEE Transactions on Instrumentation and Measurement, 2015, 64(10): 2616–2625CrossRefGoogle Scholar
  15. 15.
    Lindo A, Garcia E, Ureña J, del Carmen Perez M, Hernandez A. Multiband waveform design for an ultrasonic indoor positioning system. IEEE Sensors Journal, 2015, 15(12): 7190–7199CrossRefGoogle Scholar
  16. 16.
    Wang T Q, Sekercioglu Y A, Neild A, Armstrong J. Position accuracy of time-of-arrival based ranging using visible light with application in indoor localization systems. Journal of Lightwave Technology, 2013, 31(20): 3302–3308CrossRefGoogle Scholar
  17. 17.
    Do T H, Yoo M. TDOA-based indoor positioning using visible light. Photonic Network Communications, 2014, 27(2): 80–88CrossRefGoogle Scholar
  18. 18.
    Panta K, Armstrong J. Indoor localization using white LEDs. Electronics Letters, 2012, 48(4): 228–230CrossRefGoogle Scholar
  19. 19.
    Arafa A, Jin X, Klukas R. Wireless indoor optical positioning with a differential photosensor. IEEE Photonics Technology Letters, 2012, 24(12): 1027–1029CrossRefGoogle Scholar
  20. 20.
    Arafa A, Jin X, Bergen M H, Klukas R, Holzman J F. Characterization of image receivers for optical wireless location technology. IEEE Photonics Technology Letters, 2015, 27(18): 1923–1926CrossRefGoogle Scholar
  21. 21.
    Bergen M H, Jin X, Guerrero D, Chaves H A L F, Fredeen N V, Holzman J F. Design and implementation of an optical receiver for angle-of-arrival-based positioning. Journal of Lightwave Technology, 2017, 35(18): 3877–3885CrossRefGoogle Scholar
  22. 22.
    Zhu B, Cheng J, Wang Y, Yan J, Wang J. Three-dimensional VLC positioning based on angle difference of arrival with arbitrary tilting angle of receiver. IEEE Journal on Selected Areas in Communications, 2018, 36(1): 8–22CrossRefGoogle Scholar
  23. 23.
    Yasir M, Ho S W, Vellambi B N. Indoor position tracking using multiple optical receivers. Journal of Lightwave Technology, 2016, 34(4): 1166–1176CrossRefGoogle Scholar
  24. 24.
    Wu J, Zhu J, Yu Z, Zhuge J. Three-dimensional temperature field compensation technology for large-scale ultrasonic positioning system. Transactions of the Institute of Measurement & Control, 2016, 39(12): 0142331216648375Google Scholar
  25. 25.
    Zhao X, Xiao Z, Markham A, Trigoni N, Ren Y. Does BTLE measure up against WiFi? A comparison of indoor location performance. In: Proceedings of20th EuropeanWireless Conference on European Wireless. Barcelona, Spain: IEEE, 2014, 1–6Google Scholar
  26. 26.
    Infsoft GmbH. Indoor Positioning, Tracking and Indoor Navigation with Wi-Fi. 2017,, accessed: 24-Jan-2018
  27. 27.
    Gezici S, Tian Z, Giannakis G B, Kobayashi H, Molisch A F, Poor H V, Sahinoglu Z. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Processing Magazine, 2005, 22(4): 70–84CrossRefGoogle Scholar
  28. 28.
    Sadi F, Johnson T, Klukas R. Simulation of a non-coherent UWB transceiver design–noise and impairment analysis. International Journal of Ultra Wideband Communications and Systems, 2012, 2(4): 216–224CrossRefGoogle Scholar
  29. 29.
    Bharadwaj R, Swaisaenyakorn S, Parini C G, Batchelor J C, Alomainy A. Impulse radio ultra-wideband communications for localization and tracking of human body and limbs movement for healthcare applications. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7298–7309CrossRefGoogle Scholar
  30. 30.
    Zhang W, Chowdhury M I S, Kavehrad M. Asynchronous indoor positioning system based on visible light communications. Optical Engineering, 2014, 53(4): 045105CrossRefGoogle Scholar
  31. 31.
    Wu D, Ghassemlooy Z, Zhong W D, Khalighi M A, Minh H L, Chen C, Zvanovec S, Boucouvalas A C. Effect of optimal Lambertian order for cellular indoor optical wireless communication and positioning systems. Optical Engineering (Redondo Beach, Calif.), 2016, 55(6): 066114Google Scholar
  32. 32.
    Li L, Hu P, Peng C, Shen G, Zhao F. Epsilon: a visible light based positioning system. In: Proceedings of 11th USENIX Conference on Networked Systems Design and Implementation. Seattle,WA, USA: ACM, 2014, 331–343Google Scholar
  33. 33.
    Arafa A, Dalmiya S, Klukas R, Holzman J F. Angle-of-arrival reception for optical wireless location technology. Optics Express, 2015, 23(6): 7755–7766CrossRefGoogle Scholar
  34. 34.
    Armstrong J, Sekercioglu Y A, Neild A. Visible light positioning: a roadmap for international standardization. IEEE Communications Magazine, 2013, 51(12): 68–73CrossRefGoogle Scholar
  35. 35.
    Jin X, Holzman J F. Differential retro-detection for remote sensing applications. IEEE Sensors Journal, 2010, 10(12): 1875–1883CrossRefGoogle Scholar
  36. 36.
    Collier C M, Jin X, Holzman J F, Cheng J. Omni-directional characteristics of composite retroreflectors. Journal of Optics A, Pure and Applied Optics, 2009, 11(8): 085404CrossRefGoogle Scholar
  37. 37.
    Bergen M H, Arafa A, Jin X, Klukas R, Holzman J F. Characteristics of angular precision and dilution of precision for optical wireless positioning. Journal of Lightwave Technology, 2015, 33(20): 4253–4260CrossRefGoogle Scholar
  38. 38.
    Davis J, Hsieh Y H, Lee H C. Humans perceive flicker artifacts at 500 Hz. Scientific Reports, 2015, 5(1): 7861CrossRefGoogle Scholar
  39. 39.
    Dempster A G. Dilution of precision in angle-of-arrival positioning systems. Electronics Letters, 2006, 42(5): 291–292CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Applied ScienceUniversity of British ColumbiaKelownaCanada
  2. 2.Technical University of DenmarkLyngbyDenmark

Personalised recommendations