Advertisement

Frontiers of Optoelectronics

, Volume 9, Issue 2, pp 306–311 | Cite as

Influence of temperature and reverse bias on photocurrent spectrum and supra-bandgap spectral response of monolithic GaInP/GaAs double-junction solar cell

  • Zhuo Deng
  • Jiqiang Ning
  • Rongxin Wang
  • Zhicheng Su
  • Shijie XuEmail author
  • Zheng Xing
  • Shulong Lu
  • Jianrong Dong
  • Hui Yang
Research Article

Abstract

In this paper, influence of temperature and reverse bias on photocurrent spectrum and spectral response of a monolithic GaInP/GaAs double-junction solar cell was investigated in detail. Two sharp spectral response offsets, corresponding to the bandedge photo absorption of the bottom GaAs and the top GaInP subcells, respectively, show the starting response points of individual subcells. More interestingly, the cell photocurrent was found to enhance significantly with increasing the temperature. In addition, the cell photocurrent also increases obviously as the reverse bias voltage increases. The integrated photocurrent intensity of the top GaInP subcell was particularly addressed. A theoretical model was proposed to simulate the reverse bias dependence of the integrated photocurrent of the GaInP subcell at different temperatures.

Keywords

GaInP alloy GaAs solar cell photocurrent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cotal H, Fetzer C, Boisvert J, Kinsey G, King R, Hebert P, Yoon H, Karam N. III–V multijunction solar cells for concentrating photovoltaics. Energy & Environmental Science, 2009, 2(2): 174–192CrossRefGoogle Scholar
  2. 2.
    Leite M S, Woo R L, Munday J N, HongWD, Mesropian S, Law D C, Atwater H A. Towards an optimized all lattice-matched InAlAs/ InGaAsP/InGaAs multijunction solar cell with efficiency>50%. Applied Physics Letters, 2013, 102(3): 033901CrossRefGoogle Scholar
  3. 3.
    Fraunhofer I S E. World record solar cell with 44.7% efficiency. 2013, November 11. www.sciencedaily.com/releases/2013/09/ 130923204214.htmGoogle Scholar
  4. 4.
    Takamoto T, Ikeda E, Kurita H, Ohmori M. Over 30% efficient InGaP/GaAs tandem solar cells. Applied Physics Letters, 1997, 70 (3): 381CrossRefGoogle Scholar
  5. 5.
    Yang MJ, Yamaguchi M, Takamoto T, Ikeda E, Kurita E H, Ohmori M. Photoluminescence analysis of InGaP top cells for highefficiency multi-junction solar cells. Solar Energy Materials and Solar Cells, 1997, 45(4): 331–339CrossRefGoogle Scholar
  6. 6.
    King R R, Fetzer C M, Colter P C, Edmondson K M, Ermer J H, Cotal H L, Hojun Y, Stavrides A P, Kinsey G, Krut D D, Karam N H. High-efficiency space and terrestrial multijunction solar cells through bandgap control in cell structures. In: Proceedings of Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE., 2002, 776–781Google Scholar
  7. 7.
    Xiong K L, Lu S L, Dong J R, Zhou T F, Jiang D S, Wang R X, Yang H. Light-splitting photovoltaic system utilizing two dual-junction solar cells. Solar Energy, 2010, 84(12): 1975–1978CrossRefGoogle Scholar
  8. 8.
    Deng Z, Wang R X, Ning J Q, Zheng C C, Bao W, Xu S J, Zhang X D, Lu S L, Dong J R, Zhang B S, Yang H. Radiative recombination of carriers in the GaxIn1–xP/GaAs double-junction tandem solar cells. Solar Energy Materials and Solar Cells, 2013, 111: 102–106CrossRefGoogle Scholar
  9. 9.
    Deng Z, Wang R X, Ning J Q, Zheng C C, Xu S J, Xing Z, Lu S L, Dong J R, Zhang B S, Yang H. Super transverse diffusion of minority carriers in GaxIn1–xP/GaAs double-junction tandem solar cells. Solar Energy, 2014, 110: 214–220CrossRefGoogle Scholar
  10. 10.
    Meusel M, Baur C, Le’tay G, Bett A W, Warta W, Fernandez E. Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation. Progress in Photovoltaics: Research and Applications, 2003, 11(8): 499–514CrossRefGoogle Scholar
  11. 11.
    King D L, Hansen B R, Moore J M, Aiken D J. New methods for measuring performance of monolithic multi-junction solar cells. In: Proceedings of Photovoltaic Specialists Conference, Conference Record of the Twenty-Eighth IEEE., 2000, 1197–1201Google Scholar
  12. 12.
    Najda S P, Dawson M D, Duggan G. Bias and temperaturedependent photocurrent spectroscopy of a compressively strained GaInP/AlGaInP single quantum well. Semiconductor Science and Technology, 1995, 10(4): 433–436CrossRefGoogle Scholar
  13. 13.
    Varshni Y P. Temperature dependence of the energy gap in semiconductors. Physica, 1967, 34(1): 149–154CrossRefGoogle Scholar
  14. 14.
    Deng Z, Ning J Q, Su Z C, Xu S J, Xing Z, Wang R X, Lu S L, Dong J R, Zhang B S, Yang H. Structural dependences of localization and recombination of photogenerated carriers in the top GaInP subcells of GaInP/GaAs double-junction tandem solar cells. ACS Applied Materials & Interfaces, 2015, 7(1): 690–695CrossRefGoogle Scholar
  15. 15.
    Kawasaki K, Tanigawa K, Fujiwara K. Tunneling effects on temperature-dependent photocurrent intensity in InxGa1–x As multiple-quantum-well diodes. In: Proceedings of IEEE Conference on Optoelectronic and Microelectronic Materials and Devices., 2006, 302–304Google Scholar
  16. 16.
    Wang J, Zheng C, Ning J, Zhang L, Li W, Ni Z, Chen Y, Wang J, Xu S. Luminescence signature of free exciton dissociation and liberated electron transfer across the junction of graphene/GaN hybrid structure. Scientific Reports, 2015, 5: 7687CrossRefGoogle Scholar
  17. 17.
    Streetman B G, Banerjee S K. Solid State Electronic Devices. New Jersey: Prentice Hall, 2009Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhuo Deng
    • 1
  • Jiqiang Ning
    • 1
    • 2
  • Rongxin Wang
    • 2
  • Zhicheng Su
    • 1
  • Shijie Xu
    • 1
    Email author
  • Zheng Xing
    • 2
  • Shulong Lu
    • 2
  • Jianrong Dong
    • 2
  • Hui Yang
    • 2
  1. 1.Department of Physics, HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI)The University of Hong KongHong KongChina
  2. 2.Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouChina

Personalised recommendations