Advertisement

Frontiers of Optoelectronics

, Volume 9, Issue 3, pp 353–361 | Cite as

Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier

  • Tong Cao
  • Xinliang ZhangEmail author
Research Article
  • 41 Downloads

Abstract

In this paper, we demonstrated a novel physical mechanism based on the well-barrier hole burning enhancement in a quantum well (QW) semiconductor optical amplifier (SOA) to improve the operation performance. To completely characterize the physical mechanism, a complicated theoretical model by combining QW band structure calculation with SOA’s dynamic model was constructed, in which the carrier transport, interband effects and intraband effects were all taken into account. The simulated results showed optimizing the thickness of the separate confinement heterostructure (SCH) layer can effectively enhance the well-barrier hole burning, further enhance the nonlinear effects in SOA and reduce the carrier recovery time. At the optimal thickness, the SCH layer can store enough carrier numbers, and simultaneously the stored carriers can also be fast and effectively injected into the QWs.

Keywords

nonlinear optics optical signal processing semiconductor optical amplifier (SOA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Durhuus T, Mikkelsen B, Joergensen C, Lykke Danielsen S, Stubkjaer K E. All-optical wavelength conversion by semiconductor optical amplifiers. Journal of Lightwave Technology, 1996, 14(6): 942–954CrossRefGoogle Scholar
  2. 2.
    Liu Y, Tangdiongga E, Li Z, de Waardt H, Koonen A M J, Khoe G D, Shu X, Bennion I, Dorren H J S. Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. Journal of Lightwave Technology, 2007, 25(1): 103–108CrossRefGoogle Scholar
  3. 3.
    Krzczanowicz L, Connelly M J. 40 Gb/s NRZ-DQPSK data alloptical wavelength conversion using four wave mixing in a bulk SOA. IEEE Photonics Technology Letters, 2013, 25(24): 2439–2441CrossRefGoogle Scholar
  4. 4.
    Stubkjaer K E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1428–1435CrossRefGoogle Scholar
  5. 5.
    Dong J, Zhang X, Fu S, Xu J, Shum P, Huang D. Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 770–778CrossRefGoogle Scholar
  6. 6.
    Xu J, Zhang X, Zhang Y, Dong J, Liu D, Huang D. Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments. Journal of Lightwave Technology, 2009, 27(23): 5268–5275CrossRefGoogle Scholar
  7. 7.
    Lee C G, Kim Y J, Park C S, Lee H J, Park C. Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror. Journal of Lightwave Technology, 2005, 23(2): 834–841CrossRefGoogle Scholar
  8. 8.
    Dong J, Zhang X, Xu J, Huang D, Fu S, Shum P. 40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter. Optics Express, 2007, 15(6): 2907–2914CrossRefGoogle Scholar
  9. 9.
    Banchi L, Presi M, D’Errico A, Contestabile G, Ciaramella E. Alloptical 10 and 40 Gbit/s RZ-to-NRZ format and wavelength conversion using semiconductor optical amplifiers. Journal of Lightwave Technology, 2010, 28(1): 32–38CrossRefGoogle Scholar
  10. 10.
    Yu Y, Wu W, Huang X, Zou B, Hu S, Zhang X. Multichannel alloptical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA. Journal of Lightwave Technology, 2012, 30(23): 3633–3639CrossRefGoogle Scholar
  11. 11.
    Porzi C, Serafino G, Bogoni A, Contestabile G. Phase-preserving amplitude noise compression of 40 Gb/s DPSK signals in a single SOA. Journal of Lightwave Technology, 2014, 32(10): 1966–1972CrossRefGoogle Scholar
  12. 12.
    Cao T, Chen L, Yu Y, Zhang X. Experimental demonstration and devices optimization of NRZ-DPSK amplitude regeneration scheme based on SOAs. Optics Express, 2014, 22(26): 32138–32149CrossRefGoogle Scholar
  13. 13.
    Yu J, Jeppesen P. Improvement of cascaded semiconductor optical amplifier gates by using holding light injection. Journal of Lightwave Technology, 2001, 19(5): 614–623CrossRefGoogle Scholar
  14. 14.
    Pleumeekers J L, Kauer M, Dreyer K, Burrus C, Dentai A G, Shunk S, Leuthold J, Joyner C H. Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength. IEEE Photonics Technology Letters, 2002, 14(1): 12–14CrossRefGoogle Scholar
  15. 15.
    Dupertuis M A, Pleumeekers J L, Hessler T P, Selbmann P E, Deveaud B, Dagens B, Emery J Y. Extremely fast high-gain and low-current SOA by optical speed-up at transparency. IEEE Photonics Technology Letters, 2000, 12(11): 1453–1455CrossRefGoogle Scholar
  16. 16.
    Kumar Y, Shenoy M R. A novel scheme of optical injection for fast gain recovery in semiconductor optical amplifier. IEEE Photonics Technology Letters, 2014, 26(9): 933–936CrossRefGoogle Scholar
  17. 17.
    Nielsen M L, Mørk J. Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. Journal of the Optical Society of America B, Optical Physics, 2004, 21(9): 1606–1619CrossRefGoogle Scholar
  18. 18.
    Liu Y, Tangdiongga E, Li Z, Zhang S, Waardt H D, Khoe G D, Dorren H J S. Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. Journal of Lightwave Technology, 2006, 24(1): 230–236CrossRefGoogle Scholar
  19. 19.
    Zhang L, Kang I, Bhardwaj A, Sauer N, Cabot S, Jaques J, Neilson D T. Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells. IEEE Photonics Technology Letters, 2006, 18(22): 2323–2325CrossRefGoogle Scholar
  20. 20.
    Qin C, Huang X, Zhang X. Gain recovery acceleration by enhancing differential gain in quantum well semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2011, 47(11): 1443–1450CrossRefGoogle Scholar
  21. 21.
    Qin C, Huang X, Zhang X. Theoretical investigation on gain recovery dynamics in step quantum well semiconductor optical amplifiers. Journal of the Optical Society of America B, Optical Physics, 2012, 29(4): 607–613CrossRefGoogle Scholar
  22. 22.
    Huang X, Qin C, Yu Y, Zhang X. Acceleration of carrier recovery in a quantum well semiconductor optical amplifier due to the tunneling effect. Journal of the Optical Society of America B, Optical Physics, 2012, 29(10): 2990–2994CrossRefGoogle Scholar
  23. 23.
    Matsuura M, Raz O, Gomez-Agis F, Calabretta N, Dorren H J S. Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier. Optics Express, 2011, 19(26): B551–B559CrossRefGoogle Scholar
  24. 24.
    Rideout W, Sharfin W F, Koteles E S, Vassell M O, Elman B. Wellbarrier hole burning in quantum well lasers. IEEE Photonics Technology Letters, 1991, 3(9): 784–786CrossRefGoogle Scholar
  25. 25.
    Kersting R, Schwedler R, Wolter K, Leo K, Kurz H. Dynamics of carrier transport and carrier capture in In1-xGaxAs/InP heterostructures. Physical Review B: Condensed Matter and Materials Physics, 1992, 46(3): 1639–1648CrossRefGoogle Scholar
  26. 26.
    Lysak V V, Kawaguchi H, Sukhoivanov I A, Katayama T, Shulika A V. Ultrafast gain dynamics in asymmetrical multiple quantumwell semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2005, 41(6): 797–807CrossRefGoogle Scholar
  27. 27.
    Xia F, Wei J, Menon V, Forrest S R. Monolithic integration of a semiconductor optical amplifier and a high bandwidth p-i-n photodiode using asymmetric twin-waveguide technology. IEEE Photonics Technology Letters, 2003, 15(3): 452–454CrossRefGoogle Scholar
  28. 28.
    Nagarajan R, Ishikawa M, Fukushima T, Geels R S, Bowers J E. High speed quantum-well lasers and carrier transport effects. IEEE Journal of Quantum Electronics, 1992, 28(10): 1990–2008CrossRefGoogle Scholar
  29. 29.
    Tsai C Y, Tsai C Y, Lo Y, Spencer R M, Eastman L F. Nonlinear gain coefficients in semiconductor quantum-well lasers: effects of carrier diffusion, capture, and escape. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(2): 316–330CrossRefGoogle Scholar
  30. 30.
    Agrawal G P, Olsson N A. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE Journal of Quantum Electronics, 1989, 25(11): 2297–2306CrossRefGoogle Scholar
  31. 31.
    Dailey J M, Koch T L. Simple rules for optimizing asymmetries in SOA-based Mach-Zehnder wavelength converters. Journal of Lightwave Technology, 2009, 27(11): 1480–1488CrossRefGoogle Scholar
  32. 32.
    Bennett B R, Soref R A, Alamo J A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE Journal of Quantum Electronics, 1990, 26(1): 113–122CrossRefGoogle Scholar
  33. 33.
    Chang C, Chuang S. Modeling of strained quantum-well lasers with spin-orbit coupling. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(2): 218–229CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations