Frontiers of Optoelectronics

, Volume 7, Issue 2, pp 121–155 | Cite as

Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics

Review Article

Abstract

Recently, air plasma, produced by focusing an intense laser beam to ionize atoms or molecules, has been demonstrated to be a promising source of broadband terahertz waves. However, simultaneous broadband and coherent detection of such broadband terahertz waves is still challenging. Electro-optical sampling and photoconductive antennas are the typical approaches for terahertz wave detection. The bandwidth of these detection methods is limited by the phonon resonance or carrier’s lifetime. Unlike solid-state detectors, gaseous sensors have several unique features, such as no phonon resonance, less dispersion, no Fabry-Perot effect, and a continuous renewable nature. The aim of this article is to review the development of a broadband terahertz time-domain spectrometer, which has both a gaseous emitter and sensor mainly based on author’s recent investigation. This spectrometer features high efficiency, perceptive sensitivity, broad bandwidth, adequate signal-to-noise ratio, sufficient dynamic range, and controllable polarization.

The detection of terahertz waves with ambient air has been realized through a third order nonlinear optical process: detecting the second harmonic photon that is produced by mixing one terahertz photon with two fundamental photons. In this review, a systematic investigation of the mechanism of broadband terahertz wave detection was presented first. The dependence of the detection efficiency on probe pulse energy, bias field strength, gas pressure and third order nonlinear susceptibility of gases were experimentally demonstrated with selected gases. Detailed discussions of phase matching and Gouy phase shift were presented by considering the focused condition of Gaussian beams. Furthermore, the bandwidth dependence on probe pulse duration was also demonstrated. Over 240 times enhancement of dynamic range had been accomplished with n-hexane vapor compared to conventional air sensor. Moreover, with sub-20 fs laser pulses delivered from a hollow fiber pulse compressor, an ultra-broad spectrum covering from 0.3 to 70 THz was also showed.

In addition, a balanced detection scheme using a polarization dependent geometry was developed by author to improve signal-to-noise ratio and dynamic range of conventional terahertz air-biased-coherent-detection (ABCD) systems. Utilizing the tensor property of third order nonlinear susceptibility, second harmonic pulses with two orthogonal polarizations was detected by two separated photomultiplier tubes (PMTs). The differential signal from these two PMTs offers a realistic method to reduce correlated laser fluctuation, which circumvents signal-to-noise ratio and dynamic range of conventional terahertz ABCD systems. A factor of two improvement of signal-to-noise ratio was experimentally demonstrated.

This paper also introduces a unique approach to directly produce a broadband elliptically polarized terahertz wave from laser-induced plasma with a pair of double helix electrodes. The theoretical and experimental results demonstrated that velocity mismatch between excitation laser pulses and generated terahertz waves plays a key role in the properties of the elliptically polarized terahertz waves and confirmed that the far-field terahertz emission pattern is associated with a coherent process. The results give insight into the important influence of propagation effects on terahertz wave polarization control and complete the mechanism of terahertz wave generation from laserinduced plasma.

This review provides a critical understanding of broadband terahertz time-domain spectroscopy (THz-TDS) and introduces further guidance for scientific applications of terahertz wave gas photonics.

Keywords

terahertz spectroscopy terahertz detection broadband gas sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33Google Scholar
  2. 2.
    Siegel P H. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910–928Google Scholar
  3. 3.
    Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105Google Scholar
  4. 4.
    Nuss M, Orenstein J. Terahertz time-domain spectroscopy. In: Grüner G, ed. Millimeter and Submillimeter Wave Spectroscopy of Solids. Berlin/Heidelberg: Springer, 1998, 7–50Google Scholar
  5. 5.
    Grischkowsky D, Keiding S, Exter M, Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America. B, Optical Physics, 1990, 7(10): 2006–2015Google Scholar
  6. 6.
    Exter M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Optics Letters, 1989, 14(20): 1128–1130Google Scholar
  7. 7.
    Yeh K L, Hoffmann MC, Hebling J, Nelson K A. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters, 2007, 90(17): 171121Google Scholar
  8. 8.
    You D, Jones R R, Bucksbaum P H, Dykaar D R. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Optics Letters, 1993, 18(4): 290–292Google Scholar
  9. 9.
    Bartel T, Gaal P, Reimann K, Woerner M, Elsaesser T. Generation of single-cycle THz transients with high electric-field amplitudes. Optics Letters, 2005, 30(20): 2805–2807Google Scholar
  10. 10.
    Hirori H, Doi A, Blanchard F, Tanaka K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106Google Scholar
  11. 11.
    Sell A, Leitenstorfer A, Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letters, 2008, 33(23): 2767–2769Google Scholar
  12. 12.
    Cao J C. Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures. Physical Review Letters, 2003, 91(23): 237401Google Scholar
  13. 13.
    Gaal P, Reimann K, Woerner M, Elsaesser T, Hey R, Ploog K H. Nonlinear terahertz response of -type GaAs. Physical Review Letters, 2006, 96(18): 187402Google Scholar
  14. 14.
    Danielson J R, Lee Y S, Prineas J P, Steiner J T, Kira M, Koch S W. Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells. Physical Review Letters, 2007, 99(23): 237401Google Scholar
  15. 15.
    Shen Y, Watanabe T, Arena D A, Kao C C, Murphy J B, Tsang T Y, Wang X J, Carr G L. Nonlinear cross-phase modulation with intense single-cycle terahertz pulses. Physical Review Letters, 2007, 99(4): 043901Google Scholar
  16. 16.
    Su F H, Blanchard F, Sharma G, Razzari L, Ayesheshim A, Cocker T L, Titova L V, Ozaki T, Kieffer J C, Morandotti R, Reid M, Hegmann F A. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Optics Express, 2009, 17(12): 9620–9629Google Scholar
  17. 17.
    Jewariya M, Nagai M, Tanaka K. Ladder climbing on the anharmonic intermolecular potential in an amino acid microcrystal via an intense monocycle terahertz pulse. Physical Review Letters, 2010, 105(20): 203003Google Scholar
  18. 18.
    Kuehn W, Gaal P, Reimann K, Woerner M, Elsaesser T, Hey R. Coherent ballistic motion of electrons in a periodic potential. Physical Review Letters, 2010, 104(14): 146602Google Scholar
  19. 19.
    Kampfrath T, Sell A, Klatt G, Pashkin A, Mahrlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics, 2011, 5(1): 31–34Google Scholar
  20. 20.
    Leinß S, Kampfrath T, Volkmann K, Wolf M, Steiner J T, Kira M, Koch SW, Leitenstorfer A, Huber R. Terahertz coherent control of optically dark paraexcitons in Cu2O. Physical Review Letters, 2008, 101(24): 246401Google Scholar
  21. 21.
    Huber R, Tauser F, Brodschelm A, Bichler M, Abstreiter G, Leitenstorfer A. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature, 2001, 414(6861): 286–289Google Scholar
  22. 22.
    Kaindl R A, Carnahan M A, Hägele D, Lövenich R, Chemla D S. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature, 2003, 423(6941): 734–738Google Scholar
  23. 23.
    Günter G, Anappara A A, Hees J, Sell A, Biasiol G, Sorba L, De Liberato S, Ciuti C, Tredicucci A, Leitenstorfer A, Huber R. Subcycle switch-on of ultrastrong light-matter interaction. Nature, 2009, 458(7235): 178–181Google Scholar
  24. 24.
    Hu B B, Zhang X C, Auston D H, Smith P R. Free-space radiation from electrooptic crystals. Applied Physics Letters, 1990, 56(6): 506–508Google Scholar
  25. 25.
    Han P Y, Zhang X C. Free-space coherent broadband terahertz time-domain spectroscopy. Measurement Science & Technology, 2001, 12(11): 1747–1756Google Scholar
  26. 26.
    Huber R, Brodschelm A, Tauser F, Leitenstorfer A. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Applied Physics Letters, 2000, 76(22): 3191–3193Google Scholar
  27. 27.
    Kübler C, Huber R, Tubel S, Leitenstorfer A. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared. Applied Physics Letters, 2004, 85(16): 3360–3362Google Scholar
  28. 28.
    Auston D H. Picosecond optoelectronic switching and gating in silicon. Applied Physics Letters, 1975, 26(3): 101–103 doi:10.1063/1.88079Google Scholar
  29. 29.
    Mourou G, Stancampiano C V, Antonetti A, Orszag A. Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch. Applied Physics Letters, 1981, 39(4): 295–296Google Scholar
  30. 30.
    Fattinger C, Grischkowsky D. Point source terahertz optics. Applied Physics Letters, 1988, 53(16): 1480–1482Google Scholar
  31. 31.
    Krökel D, Grischkowsky D, Ketchen M B. Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes. Applied Physics Letters, 1989, 54(11): 1046–1047Google Scholar
  32. 32.
    Shen Y C, Upadhya P C, Linfield E H, Beere H E, Davies A G. Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters. Applied Physics Letters, 2003, 83(15): 3117–3119Google Scholar
  33. 33.
    Fill E, Borgström S, Larsson J, Starczewski T, Wahlström C G, Svanberg S. XUV spectra of optical-field-ionized plasmas. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(6): 6016–6027Google Scholar
  34. 34.
    Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728Google Scholar
  35. 35.
    Forestier B, Houard A, Durand M, Andre Y B, Prade B, Dauvignac J Y, Perret F, Pichot C, Pellet M, Mysyrowicz A. Radiofrequency conical emission from femtosecond filaments in air. Applied Physics Letters, 2010, 96(14): 141111Google Scholar
  36. 36.
    Cook D J, Hochstrasser RM. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212Google Scholar
  37. 37.
    Thomson M D, Blank V, Roskos H G. Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Optics Express, 2010, 18(22): 23173–23182Google Scholar
  38. 38.
    Wu Q, Zhang X C. Free-space electro-optics sampling of midinfrared pulses. Applied Physics Letters, 1997, 71(10): 1285–1286Google Scholar
  39. 39.
    Jepsen P U, Winnewisser C, Schall M, Schyja V, Keiding S R, Helm H. Detection of THz pulses by phase retardation in lithium tantalate. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53(4): R3052–R3054Google Scholar
  40. 40.
    Nahata A, Auston D H, Heinz T F, Wu C. Coherent detection of freely propagating terahertz radiation by electro-optic sampling. Applied Physics Letters, 1996, 68(2): 150–152Google Scholar
  41. 41.
    Vagelatos N, Wehe D, King J S. Phonon dispersion and phonon densities of states for ZnS and ZnTe. Journal of Chemical Physics, 1974, 60(9): 3613–3618Google Scholar
  42. 42.
    Kleinman D A, Spitzer W G. Infrared lattice absorption of GaP. Physical Review, 1960, 118(1): 110–117Google Scholar
  43. 43.
    Gupta S, Frankel M Y, Valdmanis J A, Whitaker J F, Mourou G A, Smith F W, Calawa A R. Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures. Applied Physics Letters, 1991, 59(25): 3276–3278Google Scholar
  44. 44.
    Prabhu S S, Ralph S E, Melloch M R, Harmon E S. Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy. Applied Physics Letters, 1997, 70(18): 2419–2421Google Scholar
  45. 45.
    Kono S, Tani M, Sakai K. Coherent detection of mid-infrared radiation up to 60 THz with an LT-GaAs photoconductive antenna. Iee P-Optoelectron, 2002, 149(3): 105–109Google Scholar
  46. 46.
    Liu J, Zhang X C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103(23): 235002Google Scholar
  47. 47.
    Liu J, Zhang X C. Plasma characterization using terahertz-waveenhanced fluorescence. Applied Physics Letters, 2010, 96(4): 041505Google Scholar
  48. 48.
    Liu J, Dai J, Chin S L, Zhang X C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631Google Scholar
  49. 49.
    Clough B, Liu J, Zhang X C. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters, 2010, 35(21): 3544–3546Google Scholar
  50. 50.
    Liu J, Clough B, Zhang X C. Enhancement of photoacoustic emission through terahertz-field-driven electron motions. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(6 Pt 2): 066602Google Scholar
  51. 51.
    Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903Google Scholar
  52. 52.
    Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131Google Scholar
  53. 53.
    Nahata A, Heinz T F. Detection of freely propagating terahertz radiation by use of optical second-harmonic generation. Optics Letters, 1998, 23(1): 67–69Google Scholar
  54. 54.
    Cook D J, Chen J X, Morlino E A, Hochstrasser R M. Terahertz-field-induced second-harmonic generation measurements of liquid dynamics. Chemical Physics Letters, 1999, 309(3–4): 221–228Google Scholar
  55. 55.
    Lu X, Karpowicz N, Zhang X C. Broadband terahertz detection with selected gases. Journal of the Optical Society of America. B, Optical Physics, 2009, 26(9): A66–A73Google Scholar
  56. 56.
    Lu X, Zhang X C. Terahertz wave gas photonics: sensing with gases. Journal of Infrared, Millimeter and Terahertz Waves, 2011, 32(5): 562–569Google Scholar
  57. 57.
    Lu X, Karpowicz N, Chen Y, Zhang X C. Systematic study of broadband terahertz gas sensor. Applied Physics Letters, 2008, 93(26): 261106Google Scholar
  58. 58.
    Kleinman D A, Ashkin A, Boyd G D. Second-harmonic generation of light by focused laser beams. Physical Review, 1966, 145(1): 338Google Scholar
  59. 59.
    Ward J F, New G H C. Optical third harmonic generation in gases by a focused laser beam. Physical Review, 1969, 185(1): 57Google Scholar
  60. 60.
    Karpowics N. Physics and utilization of terahertz gas photonics. In: Physics. Rensselaer Polytechnic Institute, Troy, NY, 2009, 124Google Scholar
  61. 61.
    Finn R S, Ward J F. DC-induced optical second-harmonic generation in the inert gases. Physical Review Letters, 1971, 26: 285–289Google Scholar
  62. 62.
    Becker A, Akozbek N, Vijayalakshmi K, Oral E, Bowden C M, Chin S L. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Applied Physics. B, Lasers and Optics, 2001, 73(3): 287–290Google Scholar
  63. 63.
    Shelton D P. Nonlinear-optical susceptibilities of gases measured at 1064 and 1319 nm. Physical Review A, 1990, 42(5): 2578–2592 PMID:9904326Google Scholar
  64. 64.
    Boyd R W. Nonlinear Optics. Burlington, MA: Academic Press, 2008Google Scholar
  65. 65.
    Hermann J P, Ducuing J. Third-order polarizabilities of long-chain molecules. Journal of Applied Physics, 1974, 45(11): 5100–5102Google Scholar
  66. 66.
    Rustagi K C, Ducuing J. Third-order optical polarizability of conjugated organic-molecules. Optics Communications, 1974, 10(3): 258–261Google Scholar
  67. 67.
    Korff S, Breit G. Optical dispersion. Reviews of Modern Physics, 1932, 4(3): 471–503Google Scholar
  68. 68.
    Gouy L G. Sur la propagation anomale des ondes. Compt. Rendue Acad. Sci. Paris, 1890, 111: 33Google Scholar
  69. 69.
    Gouy L G. Sur une propriete nouvelle des ondes lumineuses. C. R. Acad. Sci. Paris, 1890, 110: 1251Google Scholar
  70. 70.
    Ruffin A B, Rudd J V, Whitaker J F, Feng S, Winful H G. Direct observation of the Gouy phase shift with single-cycle terahertz pulses. Physical Review Letters, 1999, 83(17): 3410–3413Google Scholar
  71. 71.
    Lide D R, ed. CRC Handbook of Chemistry and Physics. 86th ed. Boca Raton: CRC-Press, 2005Google Scholar
  72. 72.
    Wu Q, Zhang X C. Free-space electro-optics sampling of midinfrared pulses. Applied Physics Letters, 1997, 71(10): 1285–1286Google Scholar
  73. 73.
    Naftaly M, Dudley R. Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. Optics Letters, 2009, 34(8): 1213–1215Google Scholar
  74. 74.
    Bigio I J, Ward J F. Measurement of the hyperpolarizability ratio χ yyyy(− 2ω; 0, ω, ω)/χ yyxx(− 2ω; 0, ω, ω) for the inert gases. Physical Review A, 1974, 9(1): 35–39Google Scholar
  75. 75.
    Ward J F, Bigio I J. Molecular second- and third-order polarizabilities from measurements of second-harmonic generation in gases. Physical Review A, 1975, 11(1): 60–66Google Scholar
  76. 76.
    Ward J F, Miller C K. Measurements of nonlinear optical polarizabilities for twelve small molecules. Physical Review A, 1979, 19(2): 826–833Google Scholar
  77. 77.
    Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005Google Scholar
  78. 78.
    Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584Google Scholar
  79. 79.
    Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics, 2008, 2(10): 605–609Google Scholar
  80. 80.
    Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001Google Scholar
  81. 81.
    Silaev A A, Vvedenskii N V. Residual-current excitation in plasmas produced by few-cycle laser pulses. Physical Review Letters, 2009, 102(11): 115005Google Scholar
  82. 82.
    Kreß M, Löffler T, Thomson M D, Dörner R, Gimpel H, Zrost K, Ergler T, Moshammer R, Morgner U, Ullrich J, Roskos H G. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature Physics, 2006, 2(5): 327–331Google Scholar
  83. 83.
    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 2000, 288(5466): 635–639Google Scholar
  84. 84.
    Paulus G G, Grasbon F, Walther H, Villoresi P, Nisoli M, Stagira S, Priori E, De Silvestri S. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature, 2001, 414(6860): 182–184Google Scholar
  85. 85.
    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photonics, 2010, 4(12): 875–879Google Scholar
  86. 86.
    Paul PM, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P. Observation of a train of attosecond pulses from high harmonic generation. Science, 2001, 292(5522): 1689–1692Google Scholar
  87. 87.
    Strickland D, Mourou G. Compression of amplified chirped optical pulses. Optics Communications, 1985, 56(3): 219–221Google Scholar
  88. 88.
    Nisoli M, De Silvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique. Applied Physics Letters, 1996, 68(20): 2793–2795Google Scholar
  89. 89.
    Nisoli M, De Silvestri S, Svelto O, Szipöcs R, Ferencz K, Spielmann C, Sartania S, Krausz F. Compression of high-energy laser pulses below 5 fs. Optics Letters, 1997, 22(8): 522–524Google Scholar
  90. 90.
    Matsubara E, Yamane K, Sekikawa T, Yamashita M. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber. Journal of the Optical Society of America. B, Optical Physics, 2007, 24(4): 985–989Google Scholar
  91. 91.
    Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Biegert J, Keller U. Generation of intense, carrierenvelope phase-locked few-cycle laser pulses through filamentation. Applied Physics. B, Lasers and Optics, 2004, 79(6): 673–677Google Scholar
  92. 92.
    Couairon A, Franco M, Mysyrowicz A, Biegert J, Keller U. Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient. Optics Letters, 2005, 30(19): 2657–2659Google Scholar
  93. 93.
    Kane D J, Trebino R. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating. Optics Letters, 1993, 18(10): 823–825Google Scholar
  94. 94.
    Johnson F A. Lattice absorption bands in silicon. Proceedings of the Physical Society, London, 1959, 73(2): 265–272Google Scholar
  95. 95.
    Shan J, Dadap J I, Heinz T F. Circularly polarized light in the single-cycle limit: The nature of highly polychromatic radiation of defined polarization. Optics Express, 2009, 17(9): 7431–7439Google Scholar
  96. 96.
    Löffler T, Jacob F, Roskos H G. Generation of terahertz pulses by photoionization of electrically biased air. Applied Physics Letters, 2000, 77(3): 453–455Google Scholar
  97. 97.
    Roskos H G, Thomson M D, Kreß M, Löffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser Photonics Rev, 2007, 1(4): 349–368Google Scholar
  98. 98.
    Houard A, Liu Y, Prade B, Tikhonchuk V T, Mysyrowicz A. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Physical Review Letters, 2008, 100(25): 255006Google Scholar
  99. 99.
    Blanchard F, Sharma G, Ropagnol X, Razzari L, Morandotti R, Ozaki T. Improved terahertz two-color plasma sources pumped by high intensity laser beam. Optics Express, 2009, 17(8): 6044–6052Google Scholar
  100. 100.
    Babushkin I, Kuehn W, Köhler C, Skupin S, Bergé L, Reimann K, Woerner M, Herrmann J, Elsaesser T. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Physical Review Letters, 2010, 105(5): 053903Google Scholar
  101. 101.
    Liu Y, Houard A, Prade B, Mysyrowicz A, Diaw A, Tikhonchuk V T. Amplification of transition-Cherenkov terahertz radiation of femtosecond filament in air. Applied Physics Letters, 2008, 93(5): 051108Google Scholar
  102. 102.
    Chen Y P, Wang T J, Marceau C, Théberge F, Châteauneuf M, Dubois J, Kosareva O, Chin S L. Characterization of terahertz emission from a dc-biased filament in air. Applied Physics Letters, 2009, 95: 101101Google Scholar
  103. 103.
    Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001Google Scholar
  104. 104.
    Wen H D, Lindenberg AM. Coherent terahertz polarization control through manipulation of electron trajectories. Physical Review Letters, 2009, 103(2): 023902Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.SunEdison Inc.Saint PetersUSA
  2. 2.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations