Frontiers of Optoelectronics in China

, Volume 3, Issue 2, pp 109–124 | Cite as

Asymmetric resonant cavities and their applications in optics and photonics: a review

Review Article

Abstract

Asymmetric resonant cavities (ARCs) with smoothly deformed boundaries are currently under intensive study because they possess distinct properties that conventional symmetric cavities cannot provide. On one hand, it has been demonstrated that ARCs allow for highly directional emission instead of the in-plane isotropic light output in symmetric whispering-gallery cavities, such as microdisks, microspheres, and microtoroids. On the other hand, ARCs behave like open billiard system and thus offer an excellent platform to test classical and quantum chaos. This article reviews the recent progresses and prospects for the experimental realization of ARCs, with applications toward highly directional microlasing, strong-coupling light-matter interaction, and highly sensitive biosensing.

Keywords

asymmetric resonant cavity (ARC) directional emission quality factor whispering gallery mode chaos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vahala K J. Optical Microcavities. Singapore: World Scientific, 2004CrossRefGoogle Scholar
  2. 2.
    Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839–846CrossRefGoogle Scholar
  3. 3.
    Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J. The atom-cavity microscope: single atoms bound in orbit by single photons. Science, 2000, 287(5457): 1447–1453CrossRefGoogle Scholar
  4. 4.
    Gerard J M, Sermage B, Gayral B, Legrand B, Costard E, Thierry-Mieg V. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Physical Review Letters, 1998, 81(5): 1110–1113CrossRefGoogle Scholar
  5. 5.
    Foresi J S, Villeneuve P R, Ferrera J, Thoen E R, Steinmeyer G, Fan S, Joannopoulos J D, Kimerling L C, Smith H I, Ippen E P. Photonic-bandgap microcavities in optical waveguides. Nature, 1997, 390(6656): 143–145CrossRefGoogle Scholar
  6. 6.
    Vučković J, Lončr M, Mabuchi H, Scherer A. Design of photonic crystal microcavities for cavity QED. Physical Review E, 2001, 65(1): 016608CrossRefGoogle Scholar
  7. 7.
    Srinivasan K, Barclay P E, Painter O, Chen J X, Cho A Y, Gmachl C. Experimental demonstration of a high quality factor photonic crystal microcavity. Applied Physics Letters, 2003, 83(10): 1915–1917CrossRefGoogle Scholar
  8. 8.
    Ching S C, Lai H M, Young K. Dielectric microspheres as optical cavities: Einstein A and B coefficients and level shift. Journal of the Optical Society of America B, 1987, 4(12): 2004–2009CrossRefGoogle Scholar
  9. 9.
    Collot L, Lefevre-Seguin V, Brune M, Raimond J M, Haroche S. Very high-Q whispering-gallery mode resonances observed on fused silica microspheres. Europhysics Letters, 1993, 23(5): 327–334CrossRefGoogle Scholar
  10. 10.
    Gayral B, Gerard J M, Lemaitre A, Dupuis C, Manin L, Pelouard J L. High-Q wet-etched GaAs microdisks containing InAs quantum boxes. Applied Physics Letters, 1999, 75(13): 1908–1910CrossRefGoogle Scholar
  11. 11.
    Moon H J, Chough Y T, An K. Cylindrical microcavity laser based on the evanescent-wave-coupled gain. Physical Review Letters, 2000, 85(15): 3161–3164CrossRefGoogle Scholar
  12. 12.
    Armani D K, Kippenberg T J, Spillane S M, Vahala K J. Ultrahigh-Q toroid microcavity on a chip. Nature, 2003, 421(6926): 925–928CrossRefGoogle Scholar
  13. 13.
    Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H, Rempe G. Cavity cooling of a single atom. Nature, 2004, 428(6978): 50–52CrossRefGoogle Scholar
  14. 14.
    McKeever J, Boca A, Boozer A D, Buck J R, Kimble H J. Experimental realization of a one-atom laser in the regime of strong coupling. Nature, 2003, 425(6955): 268–271CrossRefGoogle Scholar
  15. 15.
    Noda S, Fujita M, Asano T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photonics, 2007, 1(8): 449–458CrossRefGoogle Scholar
  16. 16.
    Tanabe T, Notomi M, Kuramochi E, Shinya A, Taniyama H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nature Photonics, 2007, 1(1): 49–52CrossRefGoogle Scholar
  17. 17.
    Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes. Physics Letters A, 1989, 137(7–8): 393–397CrossRefGoogle Scholar
  18. 18.
    Savchenkov A A, Ilchenko V S, Matsko A B, Maleki L. Kilohertz optical resonances in dielectric crystal cavities. Physical Review A, 2004, 70(5): 051804CrossRefGoogle Scholar
  19. 19.
    McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A. Whispering-gallery mode microdisk lasers. Applied Physics Letters, 1992, 60(3): 289–291CrossRefGoogle Scholar
  20. 20.
    Sandoghdar V, Treussart F, Hare J, Lefèvre-Seguin V, Raimond J M, Haroche S. Very low threshold whispering-gallery-mode microsphere laser. Physical Review A, 1996, 54(3): R1777–R1780CrossRefGoogle Scholar
  21. 21.
    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J. Observation of strong coupling between one atom and a monolithic microresonator. Nature, 2006, 443(7112): 671–674CrossRefGoogle Scholar
  22. 22.
    Armani A M, Kulkarni R P, Fraser S E, Flagan R C, Vahala K J. Label-free, single-molecule detection with optical microcavities. Science, 2007, 317(5839): 783–787CrossRefGoogle Scholar
  23. 23.
    Gorodetsky M L, Ilchenko V S. High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers. Optics Communications, 1994, 113(1–3): 133–143CrossRefGoogle Scholar
  24. 24.
    Dubreuil N, Knight J C, Leventhal D, Sandoghdar V, Hare J, Lefere-Seguin V, Raimond J M, Haroche S. Mapping whispering-gallery modes in microspheres with a near-field probe. Optics Letters, 1995, 20(14): 1515–1517CrossRefGoogle Scholar
  25. 25.
    Cai M, Painter O, Vahala K J. Observation of critical coupling in a fiber taper to silica-microsphere whispering gallery mode system. Physical Review Letters, 2000, 85(1): 74–77CrossRefGoogle Scholar
  26. 26.
    Nöckel J U, Stone A D. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 1997, 385(6611): 45–47CrossRefGoogle Scholar
  27. 27.
    Narimanov E E, Podolskiy V A. Chaos-assisted tunneling and dynamical localization in dielectric microdisk resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 40–51CrossRefGoogle Scholar
  28. 28.
    Chin M K, Chu D Y, Ho S T. Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes. Journal of Applied Physics, 1994, 75(7): 3302–3307CrossRefGoogle Scholar
  29. 29.
    Wiersig J. Boundary element method for resonances in dielectric microcavities. Journal of Optics A: Pure and Applied Optics, 2003, 5(1): 53–60CrossRefGoogle Scholar
  30. 30.
    Zou C L, Yang Y, Xiao Y F, Dong C H, Han Z F, Guo G C. Accurately calculating high quality factor of whispering-gallery modes with boundary element method. Journal of the Optical Society of America B, 2009, 26(11): 2050–2053CrossRefGoogle Scholar
  31. 31.
    Boriskina S V, Sewell P, Benson T M, Nosich A I. Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization. Journal of the Optical Society of America A, 2004, 21(3): 393–402CrossRefGoogle Scholar
  32. 32.
    Fujita M, Baba T. Proposal and finite-difference time-domain simulation of whispering gallery mode microgear cavity. IEEE Journal of Quantum Electronics, 2001, 37(10): 1253–1258CrossRefGoogle Scholar
  33. 33.
    Guo W H, Li W J, Huang Y Z. Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation. IEEE Microwave and Wireless Components Letters, 2001, 11(5): 223–225MathSciNetCrossRefGoogle Scholar
  34. 34.
    Stöckmann H J. Quantum Chaos: An Introduction. UK: Cambridge University Press, 1999CrossRefMATHGoogle Scholar
  35. 35.
    Backer A. Quantum chaos in billiards. Computing in Science and Engineering, 2007, 9(3): 60–64CrossRefGoogle Scholar
  36. 36.
    Hentschel M, Schomerus H, Schubert R. Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond. Europhysics Letters, 2003, 62(5): 636–642CrossRefGoogle Scholar
  37. 37.
    Nöckel J U, Chang R K. 2-D microcavities: theory and experiments. In: van Zee R D, Looney J P, eds. Cavity-Enhanced Spectroscopies. San Diego: Academic Press, 2002Google Scholar
  38. 38.
    Heller E J. Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of periodic orbits. Physical Review Letters, 1984, 53(16): 1515–1518MathSciNetCrossRefGoogle Scholar
  39. 39.
    Schwefel H G L, Rex N B, Tureci H E, Chang R K, Stone A D, Ben-Messaoud T, Zyss J. Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers. Journal of the Optical Society of America B, 2004, 21(5): 923–934CrossRefGoogle Scholar
  40. 40.
    Schäfer R, Kuhl U, Stöckmann H J. Directed emission from a dielectric microwave billiard with quadrupolar shape. New Journal of Physics, 2006, 8(3): 46CrossRefGoogle Scholar
  41. 41.
    Lee S B, Yang J, Moon S, Lee J H, An K, Shim J B, Lee HW, Kim SW. Universal output directionality of single modes in a deformed microcavity. Physical Review A, 2007, 75(1): 011802CrossRefGoogle Scholar
  42. 42.
    Levi A F J, Slusher R E, McCall S L, Glass J L, Pearton S J, Logan R A. Directional light coupling from microdisk lasers. Applied Physics Letters, 1993, 62(6): 561–563CrossRefGoogle Scholar
  43. 43.
    Mekis A, 5Nöckel J U, Chen G, Stone A D, Chang R K. Ray chaos and Q spoiling in lasing droplets. Physical Review Letters, 1995, 75(14): 2682–2685CrossRefGoogle Scholar
  44. 44.
    Moon H J, Ko K H, Noh Y C, Kim G H, Lee J H, Chang J S. Observation of Q-spoiling effects on the resonance modes from a noncircularly deformed liquid jet. Optics Letters, 1997, 22(23): 1739–1741CrossRefGoogle Scholar
  45. 45.
    Nöckel J U, Stone A D, Chen G, Grossman H L, Chang R K. Directional emission from asymmetric resonant cavities. Optics Letters, 1996, 21(19): 1609–1611CrossRefGoogle Scholar
  46. 46.
    Gmachl C, Capasso F, Narimanov E E, Nöckel J U, Stone A D, Faist J, Sivco D L, Cho A Y. High-power directional emission from microlasers with chaotic resonators. Science, 1998, 280(5369): 1556–1564CrossRefGoogle Scholar
  47. 47.
    Gianordoli S, Hvozdara L, Strasser G, Schrenk W, Faist J, Gornik E. Long-wavelength (λ = 10 μm) quadrupolar-shaped GaAs-AlGaAs microlasers. IEEE Journal of Quantum Electronics, 2000, 36(4): 458–464CrossRefGoogle Scholar
  48. 48.
    Gmachl C, Narimanov E E, Capasso F, Baillargeon J N, Cho A Y. Kolmogorov-Arnold-Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators. Optics Letters, 2002, 27(10): 824–826CrossRefGoogle Scholar
  49. 49.
    Lee S B, Lee J H, Chang J S, Moon H J, Kim S W, An K. Observation of scarred modes in asymmetrically deformed microcylinder lasers. Physical Review Letters, 2002, 88(3): 033903CrossRefGoogle Scholar
  50. 50.
    Rex N B, Tureci H E, Schwefel H G L, Chang R K, Stone A D. Fresnel filtering in lasing emission from scarred modes of wavechaotic optical resonators. Physical Review Letters, 2002, 88(9): 094102CrossRefGoogle Scholar
  51. 51.
    Polson R C, Vardeny Z V. Directional emission from asymmetric microlaser resonators of p-conjugated polymers. Applied Physics Letters, 2004, 85(11): 1892–1894CrossRefGoogle Scholar
  52. 52.
    McDonald S W, Kaufman A N. Wave chaos in the stadium: statistical properties of short-wave solutions of the Helmholts equation. Physical Review A, 1988, 37(8): 3067–3086MathSciNetCrossRefGoogle Scholar
  53. 53.
    Tomsovic S, Heller E J. Semiclassical dynamics of chaotic motion: unexpected long-time accuracy. Physical Review Letters, 1991, 67(6): 664–667MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Biham O, Kvale M. Unstable periodic orbits in the stadium billiard. Physical Review A, 1992, 46(10): 6334–6339MathSciNetCrossRefGoogle Scholar
  55. 55.
    Heller E J, Tomsovic S. Postmodern quantum mechanics. Physics Today, 1993, 46(7): 38–46CrossRefGoogle Scholar
  56. 56.
    Fukushima T, Biellak S A, Sun Y, Siegman A E. Beam propagation behavior in a quasi-stadium laser diode. Optics Express, 1998, 2(2): 21–28CrossRefGoogle Scholar
  57. 57.
    Fukushima T. Analysis of resonator eigenmodes in symmetric quasi-stadium laser diodes. Journal of Lightwave Technology, 2000, 18(12): 2208–2216CrossRefGoogle Scholar
  58. 58.
    Fukushima T, Harayama T, Davis P, Vaccaro P O, Nishimura T, Aida T. Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors. Optics Letters, 2002, 27(16): 1430–1432CrossRefGoogle Scholar
  59. 59.
    Shinohara S, Fukushima T, Harayama T. Light emission patterns from stadium-shaped semiconductor microcavity lasers. Physical Review A, 2008, 77(3): 033807CrossRefGoogle Scholar
  60. 60.
    Harayama T, Davis P, Ikeda K S. Stable oscillations of a spatially chaotic wave function in a microstadium laser. Physical Review Letters, 2003, 90(6): 063901CrossRefGoogle Scholar
  61. 61.
    Fukushima T, Harayama T. Stadium and quasi-stadium laser diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 1039–1050CrossRefGoogle Scholar
  62. 62.
    Harayama T, Fukushima T, Sunada S, Ikeda K S. Asymmetric stationary lasing patterns in 2D symmetric microcavities. Physical Review Letters, 2003, 91(7): 073903CrossRefGoogle Scholar
  63. 63.
    Fang W, Cao H, Solomon G S. Control of lasing in fully chaotic open microcavities by tailoring the shape factor. Applied Physics Letters, 2007, 90(8): 081108CrossRefGoogle Scholar
  64. 64.
    Fang W, Yamilov A, Cao H. Analysis of high-quality modes in open chaotic microcavities. Physical Review A, 2005, 72(2): 023815CrossRefGoogle Scholar
  65. 65.
    Choi M, Tanaka T, Fukushima T, Harayama T. Control of directional emission in quasistadium microcavity laser diodes with two electrodes. Applied Physics Letters, 2006, 88(21): 211110CrossRefGoogle Scholar
  66. 66.
    Lebental M, Lauret J S, Hierle R, Zyss J. Highly directional stadium-shaped polymer microlasers. Applied Physics Letters, 2006, 88(3): 031108CrossRefGoogle Scholar
  67. 67.
    Lebental M, Lauret J S, Zyss J, Schmit C, Bogomolny E. Directional emission of stadium-shaped microlasers. Physical Review A, 2007, 75(3): 033806CrossRefGoogle Scholar
  68. 68.
    Fang W, Cao H. Wave interference effect on polymer microstadium laser. Applied Physics Letters, 2007, 91(4): 041108CrossRefGoogle Scholar
  69. 69.
    Lee S Y, Ryu J W, Shim J B, Lee S B, Kim S W, An K. Divergent Petermann factor of interacting resonances in a stadium-shaped microcavity. Physical Review A, 2008, 78(1): 015805CrossRefGoogle Scholar
  70. 70.
    Chern G D, Tureci H E, Stone A D, Chang R K, Kneissl M, Johnson N M. Unidirectional lasing from InGaN multiplequantum-well spiral-shaped micropillars. Applied Physics Letters, 2003, 83(9): 1710–1712CrossRefGoogle Scholar
  71. 71.
    Kneissl M, Teepe M, Miyashita N, Johnson N M, Chern G D, Chang R K. Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission. Applied Physics Letters, 2004, 84(14): 2485–2487CrossRefGoogle Scholar
  72. 72.
    Ben-Messaoud T, Zyss J. Unidirectional laser emission from polymer-based spiral microdisks. Applied Physics Letters, 2005, 86(24): 241110CrossRefGoogle Scholar
  73. 73.
    Tulek A, Vardeny Z V. Unidirectional laser emission from p-conjugated polymer microcavities with broken symmetry. Applied Physics Letters, 2007, 90(16): 161106CrossRefGoogle Scholar
  74. 74.
    Lee S Y, Rim S, Ryu J W, Kwon T Y, Choi M, Kim C M. Quasiscarred resonances in a spiral-shaped microcavity. Physical Review Letters, 2004, 93(16): 164102CrossRefGoogle Scholar
  75. 75.
    Kim C M, Lee S H, Oh K R, Kim J H. Experimental verification of quasiscarred resonance mode. Applied Physics Letters, 2009, 94(23): 231120CrossRefGoogle Scholar
  76. 76.
    Lee J, Rim S, Cho J, Kim C M. Resonances near the classical separatrix of a weakly deformed circular microcavity. Physical Review Letters, 2008, 101(6): 064101CrossRefGoogle Scholar
  77. 77.
    Kwon T Y, Lee S Y, Kurdoglyan M S, Rim S, Kim C M, Park Y J. Lasing modes in a spiral-shaped dielectric microcavity. Optics Letters, 2006, 31(9): 1250–1252CrossRefGoogle Scholar
  78. 78.
    Hentschel M, Kwon T Y. Designing and understanding directional emission from spiral microlasers. Optics Letters, 2009, 34(2): 163–165CrossRefGoogle Scholar
  79. 79.
    Audet R, Belkin MA, Fan J A, Lee B G, Lin K, Capasso F. Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators. Applied Physics Letters, 2007, 91(13): 131106CrossRefGoogle Scholar
  80. 80.
    Kim C M, Cho J, Lee J, Rim S, Lee S H, Oh K R, Kim J H. Continuous wave operation of a spiral-shaped microcavity laser. Applied Physics Letters, 2008, 92(13): 131110CrossRefGoogle Scholar
  81. 81.
    Wu X, Li H, Liu L, Xu L. Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser. Applied Physics Letters, 2008, 93(8): 081105CrossRefGoogle Scholar
  82. 82.
    Lee J Y, Luo X, Poon A W. Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiralshaped microdisk resonators. Optics Express, 2007, 15(22): 14650–14666CrossRefGoogle Scholar
  83. 83.
    Wiersig J, Hentschel M. Combining directional light output and ultralow loss in deformed microdisks. Physical Review Letters, 2008, 100(3): 033901CrossRefGoogle Scholar
  84. 84.
    Yan C, Wang Q J, Diehl L, Hentschel M, Wiersig J, Yu N, Pflugl C, Capasso F, Belkin M A, Edamura T, Yamanishi M, Kan H. Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity. Applied Physics Letters, 2009, 94(25): 251101CrossRefGoogle Scholar
  85. 85.
    Yi C H, Kim M W, Kim C M. Lasing characteristics of a limacon-shaped microcavity laser. Applied Physics Letters, 2009, 95(14): 141107CrossRefGoogle Scholar
  86. 86.
    Song Q, Fang W, Liu B, Ho S T, Solomon G S, Cao H. Chaotic microcavity laser with high quality factor and unidirectional output. Physical Review A, 2009, 80(4): R041807CrossRefGoogle Scholar
  87. 87.
    Shinohara S, Hentchel M, Wiersig J, Sasaki T, Harayama T. Ray-wave correspondence in limacon-shaped semiconductor microcavities. Physical Review A, 2009, 80(3): R031801CrossRefGoogle Scholar
  88. 88.
    Chang S, Chang R K, Stone A D, Nöckel J U. Observation of emission from chaotic lasing modes in deformed microspheres: displacement by the stable-orbit modes. Journal of the Optical Society of America B, 2000, 17(11): 1828–1834CrossRefGoogle Scholar
  89. 89.
    Lacey S, Wang H. Directional emission from whispering-gallery modes in deformed fused-silica microspheres. Optics Letters, 2001, 26(24): 1943–1945CrossRefGoogle Scholar
  90. 90.
    Lacey S, Wang H, Foster D H, Nöckel J U. Directional tunneling escape from nearly spherical optical resonators. Physical Review Letters, 2003, 91(3): 033902CrossRefGoogle Scholar
  91. 91.
    Xiao Y F, Dong C H, Han Z F, Guo G C, Park Y S. Directional escape from a high-Q deformed microsphere induced by short CO2 laser pulses. Optics Letters, 2007, 32(6): 644–646CrossRefGoogle Scholar
  92. 92.
    Xiao Y F, Dong C H, Zou C L, Han Z F, Yang L, Guo G C. Low-threshold microlaser in a high-Q asymmetrical microcavity. Optics Letters, 2009, 34(4): 509–511CrossRefGoogle Scholar
  93. 93.
    Dong C, Xiao Y, Yang Y, Han Z, Guo G, Yang L. Directly mapping whispering gallery modes in a microsphere through modal coupling and directional emission. Chinese Optics Letters, 2008, 6(4): 300–302CrossRefGoogle Scholar
  94. 94.
    Park Y S, Wang H. Radiation pressure driven mechanical oscillation in deformed silica microspheres via free space evanescent excitation. Optics Express, 2007, 15(25): 16471–16477CrossRefGoogle Scholar
  95. 95.
    Park Y S, Wang H. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Physics, 2009, 5(7): 489–493CrossRefGoogle Scholar
  96. 96.
    Park Y S, Cook A K, Wang H. Cavity QED with defect centers and silica resonators. Nano Letters, 2006, 6(9): 2075–2079CrossRefGoogle Scholar
  97. 97.
    Zhang L M, Wang Y X, Zhang F J, Claus R O. Observation of whispering-gallery and directional resonant laser emission in ellipsoidal microcavities. Journal of the Optical Society of America B, 2006, 23(9): 1793–1800CrossRefGoogle Scholar
  98. 98.
    Whittaker D M, Guimaraes P S S, Sanvitto D, Vinck H, Lam S, Daraei A, Timpson J A, Fox A M, Skolnick MS, Ho Y L D, Rarity J G, Hopkinson M, Tahraoui A. High Q modes in elliptical microcavity pillars. Applied Physics Letters, 2007, 90(16): 161105CrossRefGoogle Scholar
  99. 99.
    Yang Y, Xiao Y F, Dong C H, Cui JM, Han Z F, Li G D, Guo G C. Fiber-taper-coupled zeolite cylindrical microcavity with hexagonal cross section. Applied Optics, 2007, 46(31): 7590–7593CrossRefGoogle Scholar
  100. 100.
    Braun I, Ihlein G, Laeri F, Nöckel J U, Schulz-Ekloff G, Schuth F, Vietze U, Weiss O, Wohrle D. Hexagonal microlasers based on organic dyes in nanoporous crystals. Applied Physics B, 2000, 70(3): 335–343CrossRefGoogle Scholar
  101. 101.
    Monat C, Seassal C, Letartre X, Regreny P, Gendry M, Romeo P R, Viktorovitch P, Vassord’Yerville M L, Cassagne D, Albert J P, Jalaguier E, Pocas S, Aspar B. Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane. Journal of Applied Physics, 2003, 93(1): 23–31CrossRefGoogle Scholar
  102. 102.
    Wiersig J. Hexagonal dielectric resonators and microcrystal lasers. Physical Review A, 2003, 67(2): 023807CrossRefGoogle Scholar
  103. 103.
    Shang L, Liu L, Xu L. Highly collimated laser emission from a peanut-shaped microcavity. Applied Physics Letters, 2008, 92(7): 071111CrossRefGoogle Scholar
  104. 104.
    Poon A W, Courvoisier F, Chang R K. Multimode resonances in square-shaped optical microcavities. Optics Letters, 2001, 26(9): 632–634CrossRefGoogle Scholar
  105. 105.
    Ling T, Liu L, Song Q, Xu L, Wang W. Intense directional lasing from a deformed square-shaped organic-inorganic hybrid glass microring cavity. Optics Letters, 2003, 28(19): 1784–1786CrossRefGoogle Scholar
  106. 106.
    Lee H T, Poon A W. Fano resonances in prism-coupled square micropillars. Optics Letters, 2004, 29(1): 5–7CrossRefGoogle Scholar
  107. 107.
    Wu J H, Liu A Q. Exact solution of resonant modes in a rectangular resonator. Optics Letters, 2006, 31(11): 1720–1722CrossRefGoogle Scholar
  108. 108.
    Huang Y Z, Chen Q, Guo W H, Yu L J. Experimental observation of resonant modes in GaInAsP microsquare resonators. IEEE Photonics Technology Letters, 2005, 17(12): 2589–2591CrossRefGoogle Scholar
  109. 109.
    Huang Y Z, Guo W H, Wang Q M. Influence of output waveguide on mode quality factor in semiconductor microlasers with an equilateral triangle resonator. Applied Physics Letters, 2000, 77(22): 3511–3513CrossRefGoogle Scholar
  110. 110.
    Wysin G M. Electromagnetic modes in dielectric equilateral triangle resonators. Journal of the Optical Society of America B, 2006, 23(8): 1586–1599MathSciNetCrossRefGoogle Scholar
  111. 111.
    Kurdoglyan M S, Lee S Y, Rim S, Kim C M. Unidirectional lasing from a microcavity with a rounded isosceles triangle shape. Optics Letters, 2004, 29(23): 2758–2760CrossRefGoogle Scholar
  112. 112.
    Baryshnikov Y, Heider P, Parz W, Zharnitsky V. Whispering gallery modes inside asymmetric resonant cavities. Physical Review Letters, 2004, 93(13): 133902CrossRefGoogle Scholar
  113. 113.
    Apalkov V M, Raikh M E. Directional emission from a microdisk resonator with a linear defect. Physical Review B, 2004, 70(19): 195317CrossRefGoogle Scholar
  114. 114.
    Fang W, Cao H, Podolskiy V A, Narimanov E E. Dynamical localization in microdisk lasers. Optics Express, 2005, 13(15): 5641–5652CrossRefGoogle Scholar
  115. 115.
    Boriskina S V, Benson T M, Sewell P, Nosich A I. Q Factor and emission pattern control of the WG modes in notched microdisk resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 52–58CrossRefGoogle Scholar
  116. 116.
    Wiersig J, Hentschel M. Unidirectional light emission from high-Q modes in optical microcavities. Physical Review A, 2006, 73(3): R031802CrossRefGoogle Scholar
  117. 117.
    Dettmann C P, Morozov G V, Sieber M, Waalkens H. Directional emission from an optical microdisk resonator with a point scatterer. Europhysics Letters, 2008, 82(3): 34002CrossRefGoogle Scholar
  118. 118.
    Djellali N, Gozhyk I, Owens D, Lozenko S, Lebental M, Lautru J, Ulysse C, Kippelen B, Zyss J. Controlling the directional emission of holey organic microlasers. Applied Physics Letters, 2009, 95(10): 101108CrossRefGoogle Scholar
  119. 119.
    Lee S B, Yang J, Moon S, Lee J H, An K, Shim J B, Lee HW, Kim S W. Chaos-assisted nonresonant optical pumping of quadrupoledeformed microlasers. Applied Physics Letters, 2007, 90(4): 041106CrossRefGoogle Scholar
  120. 120.
    Yang J, Lee S B, Moon S, Lee S Y, Shim J B, Kim S W, Lee J H, An K. Free-space resonant coupling in a highly deformed microcavity. In: Proceedings of the 11th International Conference on Transparent Optical Networks (ICTON). 2009, Tu.P.17Google Scholar
  121. 121.
    Tureci H E, Stone A D. Deviation from Snell’s law for beams transmitted near the critical angle: application to microcavity lasers. Optics Letters, 2002, 27(1): 7–9CrossRefGoogle Scholar
  122. 122.
    Rex N B, Tureci H E, Schwefel H G L, Chang R K, Stone A D. Fresnel filtering in lasing emission from scarred modes of wavechaotic optical resonators. Physical Review Letters, 2002, 88(9): 094102CrossRefGoogle Scholar
  123. 123.
    Schomerus H, Hentschel M. Correcting ray optics at curved dielectric microresonator interfaces: phase-space. Physical Review Letters, 2006, 96(24): 243903CrossRefGoogle Scholar
  124. 124.
    Altmann E G, Magno G D, Hentschel M. Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics. Europhysics Letters, 2008, 84(1): 10008MathSciNetCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.State Key Lab for Mesoscopic Physics, School of PhysicsPeking UniversityBeijingChina
  2. 2.Key Laboratory of Quantum InformationUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations