Frontiers of Optoelectronics in China

, Volume 3, Issue 1, pp 67–70 | Cite as

Consideration of chiral optical fibres

  • Alexander Argyros
  • Mark Straton
  • Andrew Docherty
  • Eun Hee Min
  • Ziyi Ge
  • Kok Hou Wong
  • Francois Ladouceur
  • Leon Poladian
Research Article

Abstract

Circular birefringence is a property of chiral materials. In this work, we consider the use of chiral materials in optical fibres to produce circularly birefringent optical fibres and in fibres where a contrast in circular birefringence contributes to forming the waveguide. (t϶-menthyl methacrylate is also investigated as a possible material for the fabrication of such fibres.

Keywords

microstructured optical fibres microstructured polymer optical fibres photonic crystal fibres chirality chiral waveguides birefringence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ziemann O, Krauser J, Zamzow P E, Daum W. POF Handbook: Optical Short Range Transmission Systems. 2nd ed. Berlin: Springer, 2008Google Scholar
  2. 2.
    van Eijkelenborg M A, Large M C J, Argyros A, Zagari J, Manos S, Issa N, Bassett I, Fleming S, McPhedran R C, de Sterke C M, Nicorovici N A P. Microstructured polymer optical fibre. Optics Express, 2001, 9(7): 319–327CrossRefGoogle Scholar
  3. 3.
    Large M C J, Poladian L, Barton G W, van Eijkelenborg M A. Microstructured Polymer Optical Fibres. Berlin: Springer, 2007Google Scholar
  4. 4.
    Argyros A. Microstructured polymer optical fibres. Journal of Lightwave Technology, 2009, 27(11): 1571–1579CrossRefGoogle Scholar
  5. 5.
    Noda J, Okamoto K, Sasaki Y. Polarization-maintaining fibers and their applications. Journal of Lightwave Technology, 1986, 4(8): 1071–1089CrossRefGoogle Scholar
  6. 6.
    Russell P St J. Photonic-crystal fibers. Journal of Lightwave Technology, 2006, 24(12): 4729–4749CrossRefGoogle Scholar
  7. 7.
    Birch R D. Fabrication and characterisation of circularly birefringent helical fibres. Electronics Letters, 1987, 23(1): 50–52CrossRefGoogle Scholar
  8. 8.
    Argyros A, Pla J, Ladouceur F, Poladian L. Circular and elliptical birefringence in spun microstructured optical fibres. Optics Express, 2009, 17(18): 15983–15990CrossRefGoogle Scholar
  9. 9.
    Michie A, Canning J, Bassett I, Haywood J, Digweed K, Aslund M, Ashton B, Stevenson M, Digweed J, Lau A, Scandurra D. Spun elliptically birefringent photonic crystal fibre. Optics Express, 2007, 15(4): 1811–1816CrossRefGoogle Scholar
  10. 10.
    Snyder A W, Love J D. Optical Waveguide Theory. London: Chapman and Hall, 1983Google Scholar
  11. 11.
    Li J, Cao Y. Investigation of guided modes for a fiber filled with chiral media. In: Proceedings of the 8th Asia-Pacific Conference of Fundamental Problems of Opto- and Microelectronics. 2008, 182Google Scholar
  12. 12.
    Pujari N S, Kulkarni M R, Large M C J, Bassett I M, Ponrathnam S. Transparent chiral polymers for optical applications. Journal of Appllied Polymer Science, 2005, 98(1): 58–65CrossRefGoogle Scholar
  13. 13.
    Shi Y T, Yu B, Ding M X, Wang F S. Stereocomplex formation between (+)- and (-)-poly(menthyl methacrylate) in bulk. Polymer Journal, 1996, 28(5): 465–466CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Alexander Argyros
    • 1
  • Mark Straton
    • 1
  • Andrew Docherty
    • 2
  • Eun Hee Min
    • 3
  • Ziyi Ge
    • 3
  • Kok Hou Wong
    • 3
  • Francois Ladouceur
    • 3
  • Leon Poladian
    • 2
  1. 1.Institute of Photonics and Optical Science, School of PhysicsThe University of SydneySydneyAustralia
  2. 2.School of Mathematics and StatisticsThe University of SydneySydneyAustralia
  3. 3.School of Electrical Engineering and TelecommunicationsUniversity of New South WalesSydneyAustralia

Personalised recommendations