Frontiers of Optoelectronics in China

, Volume 2, Issue 3, pp 308–311 | Cite as

Simple technique to fabricate microscale and nanoscale silicon waveguide devices

  • Yao Chen
  • Junbo Feng
  • Zhiping Zhou
  • Christopher J. Summers
  • David S. Citrin
  • Jun Yu
Research Article


Fabrication of microscale and nanoscale silicon waveguide devices requires patterning silicon, but until recently, exploitation of the technology has been restricted by the difficulty of forming ever-small features with minimum linewidth fluctuation. A technique was developed for fabricating such devices achieving vertical sidewall profile, smooth sidewall roughness of less than 10 nm, and fine features of 40 nm. Subsequently, silicon microring resonator and silicon-grating coupler were realized using this technique.


nanofabrication silicon waveguide roughness microring resonator grating coupler 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pavesi L, Guillot G. Optical Interconnects-The Silicon Approach. New York: Springer-Verlag, 2006CrossRefGoogle Scholar
  2. 2.
    Zhou Z P, Gao D S, Wang Y, Chen J L, Feng J B, Xia Z X, Chen Y. Nano-optoelectronics research in WNLO. In: Proceedings of 2006 Optics Valley of China International Symposium on Optoelectronics. Wuhan: IEEE, 2006, 8–11CrossRefGoogle Scholar
  3. 3.
    Wahlbrink T, Mollenhauer T, Georgiev Y M, Henschel W, Efavi J K, Gottlob H D B, Lemme M C, Kurz H, Niehusmann J, Bolivar P H. Highly selective etch process for silicon-on-insulator nanodevices. Microelectronic Engineering, 2005, 78–79 (special issue): 212-217Google Scholar
  4. 4.
    Welch C C, Goodyear A L, Wahlbrink T, Lemme MC, Mollenhauer T. Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas. Microelectronic Engineering, 2006, 83(4–9): 1170–1173CrossRefGoogle Scholar
  5. 5.
    Peyrade D, Chen Y, Talneau A, Patrini M, Galli M, Marabelli F, Agio M, Andreani L C, Silberstein E, Lalanne P. Fabrication and optical measurements of silicon on insulator photonic nanostructures. Microelectronic Engineering, 2002, 61–62: 529–536CrossRefGoogle Scholar
  6. 6.
    Absil P P, Hryniewicz J V, Little B E, Wilson R A, Joneckis L G, Ho P T. Compact microring notch filters. IEEE Photonics Technology Letters, 2000, 12(4): 398–400CrossRefGoogle Scholar
  7. 7.
    Little B E, Chu S T, Haus H A, Foresi J, Laine J P. Microring resonator channel dropping filters. Journal of Lightwave Technology, 1997, 15(6): 998–1005CrossRefGoogle Scholar
  8. 8.
    Almeida V R, Barrios C A, Panepucci R R, Lipson M. All-optical control of light on a silicon chip. Nature, 2004, 431(7012): 1081–1084CrossRefGoogle Scholar
  9. 9.
    Xu Q F, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325–327CrossRefGoogle Scholar
  10. 10.
    Absil P P, Hryniewicz J V, Little B E, Cho P S, Wilson R A, Joneckis L G, Ho P T. Wavelength conversion in GaAs micro-ring resonators. Optics Letters, 2000, 25(8): 554–556CrossRefGoogle Scholar
  11. 11.
    Bourdon G, Alibert G, Bequin A, Bellman B, Guiot E. Ultralow loss ring resonators using 3.5% index-contrast Ge-doped silica waveguides IEEE Photonics Technology Letters, 2003, 15(5): 709–711Google Scholar
  12. 12.
    Rabiei P, Steier W H, Zhang C, Dalton L R. Polymer micro-ring filters and modulators. Journal of Lightwave Technology, 2002, 20(11): 1968–1975CrossRefGoogle Scholar
  13. 13.
    Chen WY, Grover R, Ibrahim TA, Van V, Ho P T. Compact singlemode benzocyclobutene microracetrack resonators. In: Proceedings of Integrated Photonics Research. Washington, D.C.: Optical Society of America, 2003, ITuG2Google Scholar
  14. 14.
    Kiyat I, Kocabas C, Aydinli A. Integrated micro ring resonator displacement sensor for scanning probe microscopies. Journal of Micromechanics and Microengineering, 2004, 14(3): 374–381CrossRefGoogle Scholar
  15. 15.
    De Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R. Siliconon-insulator microring resonator for sensitive and label-free biosensing. Optics Express, 2007, 15(12): 7610–7615CrossRefGoogle Scholar
  16. 16.
    Krioukov E, Klunder D J W, Driessen A, Greve J, Otto C. Sensor based on an integrated optical microcavity. Optics Letters, 2002, 27(7): 512–514CrossRefGoogle Scholar
  17. 17.
    Ksendzov A, Lin Y. Integrated optics ring-resonator sensors for protein detection. Optics Letters, 2005, 30(24): 3344–3346CrossRefGoogle Scholar
  18. 18.
    Guo J P, Shaw M J, Vawter G A, Hadley G R, Esherick P, Sullivan C T. High-Q microring resonator for biochemical sensors. Proceedings of SPIE, 2005, 5728: 83–92CrossRefGoogle Scholar
  19. 19.
    Yalçin A, Popat K C, Aldridge J C, Desai T A, Hryniewicz J, Chbouki N, Little B E, Oliver K, Van V, Chu S, Gill D, Anthes-Washburn M, Unlu M S, Goldberg B B. Optical sensing of biomolecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 148–155CrossRefGoogle Scholar
  20. 20.
    Feng J B, Zhou Z P. High efficiency compact grating coupler for integrated optical circuits. Proceedings of SPIE, 2006, 6351: 63511HCrossRefGoogle Scholar
  21. 21.
    Flamm D L. Mechanisms of silicon etching in fluorine-and-chlorinecontaining plasmas. Pure and Applied Chemistry, 1990, 62(9): 1709–1720CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Yao Chen
    • 1
    • 2
  • Junbo Feng
    • 2
  • Zhiping Zhou
    • 2
    • 3
    • 4
  • Christopher J. Summers
    • 5
  • David S. Citrin
    • 4
    • 6
  • Jun Yu
    • 1
  1. 1.Department of Electronic Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
  3. 3.State Key Laboratory on Advanced Optical Communication Systems and NetworksPeking UniversityBeijingChina
  4. 4.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  5. 5.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  6. 6.Unité Mixte Internationale 2958 Georgia Tech-CNRSGeorgia Tech LorraineMetzFrance

Personalised recommendations