Environmental factors and human health: fibrous and particulate substance-induced immunological disorders and construction of a health-promoting living environment

  • Takemi Otsuki
  • Hidenori Matsuzaki
  • Suni Lee
  • Naoko Kumagai-Takei
  • Shoko Yamamoto
  • Tamayo Hatayama
  • Kei Yoshitome
  • Yasumitsu Nishimura


Among the various scientific fields covered in the area of hygiene such as environmental medicine, epidemiology, public health and preventive medicine, we are investigating the immunological effects of fibrous and particulate substances in the environment and work surroundings, such as asbestos fibers and silica particles. In addition to these studies, we have attempted to construct health-promoting living conditions. Thus, in this review we will summarize our investigations regarding the (1) immunological effects of asbestos fibers, (2) immunological effects of silica particles, and (3) construction of a health-promoting living environment. This review article summarizes the 2014 Japanese Society for Hygiene (JSH) Award Lecture of the 85th Annual Meeting of the JSH entitled “Environmental health effects: immunological effects of fibrous and particulate matter and establishment of health-promoting environments” presented by the first author of this manuscript, Prof. Otsuki, Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan, the recipient of the 2014 JSH award. The results of our experiments can be summarized as follows: (1) asbestos fibers reduce anti-tumor immunity, (2) silica particles chronically activate responder and regulatory T cells causing an unbalance of these two populations of T helper cells, which may contribute to the development of autoimmune disorders frequently complicating silicosis, and (3) living conditions to enhance natural killer cell activity were developed, which may promote the prevention of cancers and diminish symptoms of virus infections.


Asbestos Silica Living environment NK cell T cell 



All authors thank former members of the Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan, including Profs. Yoshio Mochiduki and Ayako Ueki, Drs. Fuminori Hyodoh, Takata-Tomokuni Akiko, Yasuhiko Kawakami, Takaaki Aikoh, Takakazu Matsuki, Yoshie Miura, Shuko Murakami, Ping Wu, Ying Chen, Hiroaki Hayashi and Megumi Maeda. We also thank Ms. Minako Katoh, Naomi Miyahara, Keiko Kimura, Misao Kuroki, Tomoko Sueishi, Yoshiko Yamashita, Satomi Hatada and Haruko Sakaguchi for their technical support. Foundations supporting all the findings described in this review are shown in the articles reported previously and individually. We, therefore, ask that you refer to these publications rather than being shown here a list of the foundations.

Compliance with ethical standards

Conflict of interest

Recently, the first author received a research foundation from Sumitomo Riko Co. Ltd. in 2014. However, this foundation is not related to any of the experiments shown in this manuscript. During experiments involving biological assays of negatively charged particles, Sekisui House Co. Ltd., Yamada SXL Co. Ltd. and Artech Kohbou Co. Ltd. provided the construction fees for experimental rooms, SUMICAS® devices and the experimental incubator as collaboration partners for all experiments. In addition, the first author received a research foundation including purchasing fees for experimental consumable supplies and traffic fees from Sekisui House Co. Ltd. in 2009.


  1. 1.
    Otsuki T, Maeda M, Murakami S, Hayashi H, Miura Y, Kusaka M, et al. Immunological effects of silica and asbestos. Cell Mol Immunol. 2007;4:261–8.PubMedGoogle Scholar
  2. 2.
    Maeda M, Nishimura Y, Kumagai N, Hayashi H, Hatayama T, Katoh M, et al. Dysregulation of the immune system caused by silica and asbestos. J Immunotoxicol. 2010;7:268–78. doi:10.3109/1547691X.2010.512579.CrossRefPubMedGoogle Scholar
  3. 3.
    Nishimura Y, Kumagai N, Maeda M, Hayashi H, Fukuoka K, Nakano T, et al. Suppressive effect of asbestos on cytotoxicity of human NK cells. Int J Immunopathol Pharmacol. 2011;24(1S):5S–10S.PubMedGoogle Scholar
  4. 4.
    Kumagai-Takei N, Maeda M, Chen Y, Matsuzaki H, Lee S, Nishimura Y, et al. Asbestos induces reduction of tumor immunity. Clin Dev Immunol. 2011;2011:481439. doi:10.1155/2011/481439.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Matsuzaki H, Maeda M, Lee S, Nishimura Y, Kumagai-Takei N, Hayashi H, et al. Asbestos-induced cellular and molecular alteration of immunocompetent cells and their relationship with chronic inflammation and carcinogenesis. J Biomed Biotechnol. 2012;2012:492608. doi:10.1155/2012/492608.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nishimura Y, Maeda M, Kumagai-Takei N, Lee S, Matsuzaki H, Wada Y, et al. Altered functions of alveolar macrophages and NK cells involved in asbestos-related diseases. Environ Health Prev Med. 2013;18(3):198–204. doi:10.1007/s12199-013-0333-y.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Matsuzaki H, Nishimura Y, Lee S, Maeda M, Kumagai-Takei N, Hayashi H, et al. Asbestos-induced mesothelioma: Tumor escape and alteration of immune surveillance. In: Pandalai SG, editor. Recent research developments in immunology, vol. 8. Kerala: Research Signpost Publisher; 2012. p. 13–31.Google Scholar
  8. 8.
    Nishimura Y, Maeda M, Kumagai-Takei N, Matsuzaki H, Lee S, Fukuoka K, et al. Effect of asbestos on anti-tumor immunity and immunological alteration in patients with mesothelioma. In: Belli C, Anand S, editors. Malignant mesothelioma. Rijeka: InTech Open Access Publisher; 2012. doi:10.5772/33138.
  9. 9.
    Otsuki T, Maeda M, Miura Y, Hayashi H, Murakami S, Kumagai N, et al. Immunological effects of asbestos. In: Soto A, Salazar G, editors. Asbestos: risks, environment and impact. New York: Nova Science Publishers, Inc.; 2009. p. 185–93.Google Scholar
  10. 10.
    Kamp DW. Asbestos-induced lung diseases: an update. Transl Res. 2009;153:143–52. doi:10.1016/j.trsl.2009.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moolgavkar SH, Anderson EL, Chang ET, Lau EC, Turnham P, Hoel DG. A review and critique of U.S. EPA’s risk assessments for asbestos. Crit Rev Toxicol. 2014;44:499–522. doi:10.3109/10408444.2014.902423.CrossRefPubMedGoogle Scholar
  12. 12.
    Heintz NH, Janssen-Heininger YM, Mossman BT. Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol. 2010;42:133–9. doi:10.1165/rcmb.2009-0206TR.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Case BW, Abraham JL, Meeker G, Pooley FD, Pinkerton KE. Applying definitions of “asbestos” to environmental and “low-dose” exposure levels and health effects, particularly malignant mesothelioma. J Toxicol Environ Health B Crit Rev. 2011;14:3–39. doi:10.1080/10937404.2011.556045.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hyodoh F, Takata-Tomokuni A, Miura Y, Sakaguchi H, Hatayama T, Hatada S, et al. Inhibitory effects of anti-oxidants on apoptosis of a human polyclonal T-cell line, MT-2, induced by an asbestos, chrysotile-A. Scand J Immunol. 2005;61:442–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Miura Y, Nishimura Y, Katsuyama H, Maeda M, Hayashi H, Dong M, et al. Involvement of IL-10 and Bcl-2 in resistance against an asbestos-induced apoptosis of T cells. Apoptosis. 2006;11:1825–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Maeda M, Chen Y, Hayashi H, Kumagai-Takei N, Matsuzaki H, Lee S, et al. Chronic exposure to asbestos enhances TGF-β1 production in the human adult T cell leukemia virus-immortalized T cell line MT-2. Int J Oncol. 2014;45:2522–32. doi:10.3892/ijo.2014.2682.PubMedGoogle Scholar
  17. 17.
    Hamano R, Wu X, Wang Y, Oppenheim JJ, Chen X. Characterization of MT-2 cells as a human regulatory T cell-like cell line. Cell Mol Immunol. 2014;. doi:10.1038/cmi.2014.123.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen S, Ishii N, Ine S, Ikeda S, Fujimura T, Ndhlovu LC, et al. Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells. Int Immunol. 2006;18:269–77.CrossRefPubMedGoogle Scholar
  19. 19.
    Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6:345–52.CrossRefPubMedGoogle Scholar
  20. 20.
    Linehan DC, Goedegebuure PS. CD25+CD4+ regulatory T-cells in cancer. Immunol Res. 2005;32:155–68.CrossRefPubMedGoogle Scholar
  21. 21.
    Yamaguchi T, Sakaguchi S. Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol. 2006;16:115–23.CrossRefPubMedGoogle Scholar
  22. 22.
    Ying C, Maeda M, Nishimura Y, Kumagai-Takei N, Hayashi H, Matsuzaki H, et al. Enhancement of regulatory T cell-like suppressive function in MT-2 by long-term and low-dose exposure to asbestos. Toxicology. 2015;338:86–94.CrossRefPubMedGoogle Scholar
  23. 23.
    Maeda M, Chen Y, Kumagai-Takei N, Hayashi H, Matsuzaki H, Lee S, et al. Alteration of cytoskeletal molecules in a human T cell line caused by continuous exposure to chrysotile asbestos. Immunobiology. 2013;218:1184–91. doi:10.1016/j.imbio.2013.04.007.CrossRefPubMedGoogle Scholar
  24. 24.
    Nagai H, Toyokuni S. Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: shedding light on fiber entry mechanism. Cancer Sci. 2012;103:1378–90. doi:10.1111/j.1349-7006.2012.02326.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Maeda M, Nishimura Y, Hayashi H, Kumagai N, Chen Y, Murakami S, et al. Reduction of CXC chemokine receptor 3 in an in vitro model of continuous exposure to asbestos in a human T-cell line, MT-2. Am J Respir Cell Mol Biol. 2011;45:470–9. doi:10.1165/rcmb.2010-0213OC.CrossRefPubMedGoogle Scholar
  26. 26.
    Maeda M, Nishimura Y, Hayashi H, Kumagai N, Chen Y, Murakami S, et al. Decreased CXCR3 expression in CD4+ T cells exposed to asbestos or derived from asbestos-exposed patients. Am J Respir Cell Mol Biol. 2011;45:795–803. doi:10.1165/rcmb.2010-0435OC.CrossRefPubMedGoogle Scholar
  27. 27.
    Hildebrandt GC, Corrion LA, Olkiewicz KM, Lu B, Lowler K, Duffner UA, et al. Blockade of CXCR3 receptor:ligand interactions reduces leukocyte recruitment to the lung and the severity of experimental idiopathic pneumonia syndrome. J Immunol. 2004;173:2050–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA. Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer. 2006;42:768–78.CrossRefPubMedGoogle Scholar
  29. 29.
    Kumagai-Takei N, Nishimura Y, Maeda M, Hayashi H, Matsuzaki H, Lee S, et al. Effect of asbestos exposure on differentiation of cytotoxic T lymphocytes in mixed lymphocyte reaction of human peripheral blood mononuclear cells. Am J Respir Cell Mol Biol. 2013;49:28–36. doi:10.1165/rcmb.2012-0134OC.CrossRefPubMedGoogle Scholar
  30. 30.
    Kumagai-Takei N, Nishimura Y, Maeda M, Hayashi H, Matsuzaki H, Lee S, et al. Functional properties of CD8(+) lymphocytes in patients with pleural plaque and malignant mesothelioma. J Immunol Res. 2014;2014:670140. doi:10.1155/2014/670140.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nishimura Y, Miura Y, Maeda M, Kumagai N, Murakami S, Hayashi H, et al. Impairment in cytotoxicity and expression of NK cell-activating receptors on human NK cells following exposure to asbestos fibers. Int J Immunopathol Pharmacol. 2009;22:579–90.PubMedGoogle Scholar
  32. 32.
    Nishimura Y, Maeda M, Kumagai N, Hayashi H, Miura Y, Otsuki T. Decrease in phosphorylation of ERK following decreased expression of NK cell-activating receptors in human NK cell line exposed to asbestos. Int J Immunopathol Pharmacol. 2009;22:879–88.PubMedGoogle Scholar
  33. 33.
    Iannello S, Camuto M, Cantarella S, Cavaleri A, Ferriero P, Leanza A, et al. Rheumatoid syndrome associated with lung interstitial disorder in a dental technician exposed to ceramic silica dust. A case report and critical literature review. Clin Rheumatol. 2002;21:76–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Parks CG, Conrad K, Cooper GS. Occupational exposure to crystalline silica and autoimmune disease. Environ Health Perspect. 1999;107(S5):793–802.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mayes MD. Epidemiologic studies of environmental agents and systemic autoimmune diseases. Environ Health Perspect. 1999;107(S5):743–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wu P, Miura Y, Hyodoh F, Nishimura Y, Hatayama T, Hatada S, et al. Reduced function of CD4+25+ regulatory T cell fraction in silicosis patients. Int J Immunopathol Pharmacol. 2006;19:357–68.PubMedGoogle Scholar
  37. 37.
    Otsuki T, Miura Y, Nishimura Y, Hyodoh F, Takata A, Kusaka M, et al. Alterations of Fas and Fas-related molecules in patients with silicosis. Exp Biol Med (Maywood). 2006;231:522–33.Google Scholar
  38. 38.
    Lee S, Hayashi H, Maeda M, Chen Y, Matsuzaki H, Takei-Kumagai N, et al. Environmental factors producing autoimmune dysregulation—chronic activation of T cells caused by silica exposure. Immunobiology. 2012;217:743–8. doi:10.1016/j.imbio.2011.12.009.CrossRefPubMedGoogle Scholar
  39. 39.
    Tomokuni A, Aikoh T, Matsuki T, Isozaki Y, Otsuki T, Kita S, et al. Elevated soluble Fas/APO-1 (CD95) levels in silicosis patients without clinical symptoms of autoimmune diseases or malignant tumours. Clin Exp Immunol. 1997;110:303–9.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Otsuki T, Sakaguchi H, Tomokuni A, Aikoh T, Matsuki T, Kawakami Y, et al. Soluble Fas mRNA is dominantly expressed in cases with silicosis. Immunology. 1998;94:258–62.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Otsuki T, Tomokuni A, Sakaguchi H, Aikoh T, Matsuki T, Isozaki Y, et al. Over-expression of the decoy receptor 3 (DcR3) gene in peripheral blood mononuclear cells (PBMC) derived from silicosis patients. Clin Exp Immunol. 2000;119:323–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Otsuki T, Sakaguchi H, Tomokuni A, Aikoh T, Matsuki T, Isozaki Y, et al. Detection of alternatively spliced variant messages of Fas gene and mutational screening of Fas and Fas ligand coding regions in peripheral blood mononuclear cells derived from silicosis patients. Immunol Lett. 2000;72:137–43.CrossRefPubMedGoogle Scholar
  43. 43.
    Hayashi H, Maeda M, Murakami S, Kumagai N, Chen Y, Hatayama T, et al. Soluble interleukin-2 receptor as an indicator of immunological disturbance found in silicosis patients. Int J Immunopathol Pharmacol. 2009;22:53–62.PubMedGoogle Scholar
  44. 44.
    Wu P, Hyodoh F, Hatayama T, Sakaguchi H, Hatada S, Miura Y, et al. Induction of CD69 antigen expression in peripheral blood mononuclear cells on exposure to silica, but not by asbestos/chrysotile-A. Immunol Lett. 2005;98:145–52.CrossRefPubMedGoogle Scholar
  45. 45.
    Hayashi H, Miura Y, Maeda M, Murakami S, Kumagai N, Nishimura Y, et al. Reductive alteration of the regulatory function of the CD4(+)CD25(+) T cell fraction in silicosis patients. Int J Immunopathol Pharmacol. 2010;23:1099–109.PubMedGoogle Scholar
  46. 46.
    Ueki A, Isozaki Y, Kusaka M. Anti-caspase-8 autoantibody response in silicosis patients is associated with HLA-DRB1, DQB1 and DPB1 alleles. J Occup Health. 2005;47:61–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Ueki A, Isozaki Y, Tomokuni A, Hatayama T, Ueki H, Kusaka M, et al. Intramolecular epitope spreading among anti-caspase-8 autoantibodies in patients with silicosis, systemic sclerosis and systemic lupus erythematosus, as well as in healthy individuals. Clin Exp Immunol. 2002;129:556–61.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tomokuni A, Otsuki T, Sakaguchi H, Isozaki Y, Hyodoh F, Kusaka M, et al. Detection of anti-topoisomerase I autoantibody in patients with silicosis. Environ Health Prev Med. 2002;7:7–10. doi:10.1007/BF02898059.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ueki H, Kohda M, Nobutoh T, Yamaguchi M, Omori K, Miyashita Y, et al. Antidesmoglein autoantibodies in silicosis patients with no bullous diseases. Dermatology. 2001;202:16–21.CrossRefPubMedGoogle Scholar
  50. 50.
    Takata-Tomokuni A, Ueki A, Shiwa M, Isozaki Y, Hatayama T, Katsuyama H, et al. Detection, epitope-mapping and function of anti-Fas autoantibody in patients with silicosis. Immunology. 2005;116:21–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Otsuki T, Tomokuni A, Sakaguchi H, Hyodoh F, Kusaka M, Ueki A. Reduced expression of the inhibitory genes for Fas-mediated apoptosis in silicosis patients. J Occup Health. 2000;42:163–8.CrossRefGoogle Scholar
  52. 52.
    Lee S, Matsuzaki H, Kumagai-Takei N, Yoshitome K, Maeda M, Chen Y, et al. Silica exposure and altered regulation of autoimmunity. Environ Health Prev Med. 2014;19:322–9. doi:10.1007/s12199-014-0403-9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lee S, Maeda M, Hayashi H, Matsuzaki H, Kumagai-Takei N, Nishimura Y, et al. Immunostimulation by silica particles and the development of autoimmune dysregulation. In: Duc GHT, editor. Immunostimulation. Rijeka: InTech Open Access Publisher; 2014. doi:10.5772/57544.
  54. 54.
    Takei-Kumagai N, Lee S, Matsuzaki H, Hayashi H, Maeda M, Nishimura Y, Otsuki T. Immunological effects of silica. In: Uversky VN, Kretsinger RH, Permyakov EA, editors. Encyclopedia of metalloproteins. New York: Springer Science + Business Media; 2013. p. 1965–71.CrossRefGoogle Scholar
  55. 55.
    Kumagai N, Hayashi H, Maeda M, Miura Y, Nishimura Y, Matsuzaki H, et al. Immunological effects of silica and related dysregulation of autoimmunity. In: Mavragani CP, editor. Autoimmune disorders—pathogenetic aspects. Rijeka: InTech Open Access Publisher; 2011. p. 157–74. doi:10.5772/19218.
  56. 56.
    Hayashi H, Nishimura Y, Hyodo F, Maeda M, Kumagai N, Miura Y, et al. Dysregulation of autoimmunity caused by silica exposure: Fas-mediated apoptosis in T lymphocytes derived from silicosis patients. In: Petro ME, editor. Autoimmune disorders: symptoms, diagnosis and treatment. New York: Nova Science Publishers, Inc.; 2011. p. 293–301.Google Scholar
  57. 57.
    Maddur MS, Miossec P, Kaveri SV, Bayry J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 2012;181:8–18. doi:10.1016/j.ajpath.2012.03.044.CrossRefPubMedGoogle Scholar
  58. 58.
    Bolon B. Cellular and molecular mechanisms of autoimmune disease. Toxicol Pathol. 2012;40:216–29. doi:10.1177/0192623311428481.CrossRefPubMedGoogle Scholar
  59. 59.
    Ghoreschi K, Laurence A, Yang XP, Hirahara K, O’Shea JJ. T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol. 2011;32:395–401. doi:10.1016/j.it.2011.06.007.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Otsuki T, Takahashi K, Mase A, Kawado T, Kotani M, Nishimura Y, et al. Establishment of negatively-charged indoor air conditions and their biological effects. In: Nemecek J, Schulz O, editors. Buildings and the environment. New York: Nova Science Publishers, Inc.; 2009. p. 201–14.Google Scholar
  61. 61.
    Takahashi K, Otsuki T, Mase A, Kawado T, Kotani M, Ami K, et al. Negatively-charged air conditions and responses of the human psycho-neuro-endocrino-immune network. Environ Int. 2008;34:765–72. doi:10.1016/j.envint.2008.01.003.CrossRefPubMedGoogle Scholar
  62. 62.
    Takahashi K, Otsuki T, Mase A, Kawado T, Kotani M, Nishimura Y, et al. Two weeks of permanence in negatively-charged air conditions causes alteration of natural killer cell function. Int J Immunopathol Pharmacol. 2009;22:333–42.PubMedGoogle Scholar
  63. 63.
    Nishimura Y, Takahashi K, Mase A, Kotani M, Ami K, Maeda M, et al. Exposure to negatively charged-particle dominant air-conditions on human lymphocytes in vitro activates immunological responses. 2015. doi:10.1016/j.imbio.2015.07.006.
  64. 64.
    Nishimura Y, Takahashi K, Mase A, Kotani M, Ami K, Maeda M, et al. Enhancement of NK cell cytotoxicity induced by long-term living in negatively charged-particle dominant indoor air-conditions. PLoS One. 2015. doi:10.1371/journal.pone.0132373.

Copyright information

© The Japanese Society for Hygiene 2015

Authors and Affiliations

  • Takemi Otsuki
    • 1
  • Hidenori Matsuzaki
    • 1
  • Suni Lee
    • 1
  • Naoko Kumagai-Takei
    • 1
  • Shoko Yamamoto
    • 1
  • Tamayo Hatayama
    • 1
  • Kei Yoshitome
    • 1
  • Yasumitsu Nishimura
    • 1
  1. 1.Department of HygieneKawasaki Medical SchoolKurashikiJapan

Personalised recommendations