Environmental Health and Preventive Medicine

, Volume 18, Issue 2, pp 121–129

P.R4810K, a polymorphism of RNF213, the susceptibility gene for moyamoya disease, is associated with blood pressure

  • Akio Koizumi
  • Hatasu Kobayashi
  • Wanyang Liu
  • Yukiko Fujii
  • S. T. M. L. D. Senevirathna
  • Shanika Nanayakkara
  • Hiroko Okuda
  • Toshiaki Hitomi
  • Kouji H. Harada
  • Katsunobu Takenaka
  • Takao Watanabe
  • Shinichiro Shimbo
Regular Article

Abstract

Background

Moyamoya disease—an idiopathic vascular disorder of intracranial arteries—is often accompanied by hypertension. RNF213 has been identified as a susceptibility gene for moyamoya disease. In the present study, the association of p.R4810K (G>A) with blood pressure (BP) was investigated in a Japanese population.

Methodology/principal findings

Three independent study populations, the Nyukawa (n = 984), Noshiro (n = 2,443) and Field (n = 881) studies, joined this study. BP, body weight and height were measured. Past and present symptoms and disease and medication histories were assessed by interview. Associations of p.R4810K (rs112735431, ss179362673) of RNF213 with BP were investigated. Two linkage disequilibrium blocks were constructed for moyamoya patients with p.R4810K (n = 140) and the general population (n = 384) using 39 single nucleotide polymorphisms (SNPs) spanning 390 kb around RNF213. A total of 60 carriers (3 for AA genotype and 57 for GA genotype) were found in these samples, and the minor allele frequencies were 1.4 % in the Nyukawa and Field studies and 0.2 % in the Noshiro study. Regression analyses adjusted for age, sex and body mass index based on an additive model demonstrated significant associations with systolic BP (mmHg/allele): β (standard error) was 8.2 (2.9) in the Nyukawa study (P = 4.7 × 10−3), 18.7 (5.4) in the Noshiro study (P = 4.6 × 10−4) and 8.9 (2.0) (P = 1.0 × 10−5) in the three populations. In contrast, diastolic BP showed significant associations only in the Noshiro study. Linkage disequilibrium blocks contained none of the BP-associated proxy SNPs reported by previous studies.

Conclusions/significance

Our study suggests that p.R4810K of RNF213 is associated strongly with systolic BP.

Keywords

RNF213 Moyamoya disease P.R4810K Systolic blood pressure Hypertension 

Supplementary material

12199_2012_299_MOESM1_ESM.doc (26 kb)
Supplementary material 1 (DOC 26 kb)
12199_2012_299_MOESM2_ESM.doc (38 kb)
Supplementary material 2 (DOC 38 kb)
12199_2012_299_MOESM3_ESM.doc (37 kb)
Supplementary material 3 (DOC 37 kb)

References

  1. 1.
    Takeuchi K, Shimizu K. Hypogenesis of bilateral internal carotid arteries. Brain Nerve. 1957;9:37–43.Google Scholar
  2. 2.
    Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969;20:288–99.PubMedCrossRefGoogle Scholar
  3. 3.
    Mineharu Y, Takenaka K, Yamakawa H, Inoue K, Ikeda H, et al. Inheritance pattern of familial moyamoya disease: autosomal dominant mode and genomic imprinting. J Neurol Neurosurg Psychiatry. 2006;77:1025–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Ikeda H, Sasaki T, Yoshimoto T, Fukui M, Arinami T. Mapping of a familial moyamoya disease gene to chromosome 3p24.2-p26. Am J Hum Genet. 1999;64:533–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Inoue TK, Ikezaki K, Sasazuki T, Matsushima T, Fukui M. Linkage analysis of moyamoya disease on chromosome 6. J Child Neurol. 2000;15:179–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Sakurai K, Horiuchi Y, Ikeda H, Ikezaki K, Yoshimoto T, et al. A novel susceptibility locus for moyamoya disease on chromosome 8q23. J Hum Genet. 2004;49:278–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Yamauchi T, Tada M, Houkin K, Tanaka T, Nakamura Y, et al. Linkage of familial moyamoya disease (spontaneous occlusion of the circle of Willis) to chromosome 17q25. Stroke. 2000;31:930–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Mineharu Y, Liu W, Inoue K, Matsuura N, Inoue S, et al. Autosomal dominant moyamoya disease maps to chromosome 17q25.3. Neurology. 2008;70:2357–63.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu W, Hashikata H, Inoue K, Matsuura N, Mineharu Y, et al. A rare Asian founder polymorphism of Raptor may explain the high prevalence of moyamoya disease among East Asians and its low prevalence among Caucasians. Environ Health Prev Med. 2010;15:94–104.PubMedCrossRefGoogle Scholar
  10. 10.
    Kamada F, Aoki Y, Narisawa A, Abe Y, Komatsuzaki S, et al. A genome-wide association study identifies RNF213 as the first moyamoya disease gene. J Hum Genet. 2011;56:34–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu W, Morito D, Takashima S, Mineharu Y, Kobayashi H, et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS ONE. 2011;6:e22542.PubMedCrossRefGoogle Scholar
  12. 12.
    Kuroda S, Houkin K. Moyamoya disease: current concepts and future perspectives. Lancet Neurol. 2008;7:1056–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamada I, Himeno Y, Matsushima Y, Shibuya H. Renal artery lesions in patients with moyamoya disease: angiographic findings. Stroke. 2000;31:733–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Togao O, Mihara F, Yoshiura T, Tanaka A, Kuwabara Y, et al. Prevalence of stenoocclusive lesions in the renal and abdominal arteries in moyamoya disease. AJR Am J Roentgenol. 2004;183:119–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Limaye CS, Khude S, Pednekar SJ. Moyamoya disease with hypertension in a young adult. J Assoc Physicians India. 2011;59:124–6.PubMedGoogle Scholar
  16. 16.
    Shimbo S, Zhang ZW, Moon CS, Watanabe T, Nakatsuka H, et al. Correlation between urine and blood concentrations, and dietary intake of cadmium and lead among women in the general population of Japan. Int Arch Occup Environ Health. 2000;73:163–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Watanabe T, Shimbo S, Nakatsuka H, Koizumi A, Higashikawa K, et al. Gender-related difference, geographical variation and time trend in dietary cadmium intake in Japan. Sci Total Environ. 2004;329:17–27.PubMedCrossRefGoogle Scholar
  18. 18.
    Koizumi A, Yoshinaga T, Harada K, Inoue K, Morikawa A, et al. Assessment of human exposure to polychlorinated biphenyls and polybrominated diphenyl ethers in Japan using archived samples from the early 1980s and mid-1990s. Environ Res. 2005;99:31–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Koizumi A, Harada KH, Inoue K, Hitomi T, Yang HR, et al. Past, present, and future of environmental specimen banks. Environ Health Prev Med. 2009;14:307–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Cui JS, Hopper JL, Harrap SB. Antihypertensive treatments obscure familial contributions to blood pressure variation. Hypertension. 2003;41:207–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.PubMedCrossRefGoogle Scholar
  22. 22.
    Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in East Asians. Nat Genet. 2011;43:531–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amon CI. Shifting paradigm of association studies: value of rare single nucleotide polymorphisms. Am J Human Genet. 2008;82:100–12.CrossRefGoogle Scholar
  25. 25.
    Slager SL, Huang J, Vieland VJ. Effect of allelic heterogeneity on the power of the transmission disequilibrium test. Genet Epidemiol. 2000;18:143–56.PubMedCrossRefGoogle Scholar
  26. 26.
    Purcell S, Cherny SS, Sham PC. Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics. 2003;19:149–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Burt VL, Cutler JA, Higgins M, Horan MJ, Labarthe D, et al. Trends in the prevalence, awareness, treatment, and control of hypertension in the adult US population. Data from the health examination surveys, 1960 to 1991. Hypertension. 1995;26:60–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Staessen JA, Gasowski J, Wang JG, Thijs L, Den Hond E, et al. Risks of untreated and treated isolated systolic hypertension in the elderly: meta-analysis of outcome trials. Lancet. 2000;355:865–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Draheim CC, Geijer JR, Dengel DR. Comparison of intima-media thickness of the carotid artery and cardiovascular disease risk factors in adults with versus without the Down syndrome. Am J Cardiol. 2010;106:1512–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Koduri PR, Agbemadzo B, Nathan S. Hemoglobin S-C disease revisited: clinical study of 106 adults. Am J Hematol. 2001;68:298–300.PubMedCrossRefGoogle Scholar
  31. 31.
    Reid HL, Anah CO. Haemorheological parameters in hypertensive Nigerians with and without sickle-cell trait. Angiology. 1985;36:379–86.PubMedCrossRefGoogle Scholar
  32. 32.
    Zinnamosca L, Petramala L, Cotesta D, Marinelli C, Schina M, et al. Neurofibromatosis type 1 (NF1) and pheochromocytoma: prevalence, clinical and cardiovascular aspects. Arch Dermatol Res. 2011;303:317–25.PubMedCrossRefGoogle Scholar
  33. 33.
    Eu-ahsunthornwattana J, Trachoo O, Dejsuphong D, Tunteeratum A, Srichan K, et al. Noonan syndrome, metabolic syndrome and stroke-in-the-young: coincidence, causal or contribution? J Med Assoc Thai. 2010;93:1084–7.PubMedGoogle Scholar
  34. 34.
    Rokicki W, Rokicka A. Noonan syndrome coexisting with essential arterial hypertension in 8 year old boy. Wiad Lek. 2002;55:488–93.PubMedGoogle Scholar
  35. 35.
    Di Bartolomeo R, Polidori G, Piastra M, Viola L, Zampino G, et al. Malignant hypertension and cerebral haemorrhage in Seckel syndrome. Eur J Pediatr. 2003;162:860–2.PubMedCrossRefGoogle Scholar
  36. 36.
    Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84:617–27.PubMedCrossRefGoogle Scholar
  37. 37.
    Miskinyte S, Butler MG, Herve D, Sarret C, Nicolino M, et al. Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya. Am J Hum Genet. 2011;88:718–28.PubMedCrossRefGoogle Scholar
  38. 38.
    Giannotti G, Doerries C, Mocharla PS, Mueller MF, Bahlmann FH, et al. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction. Hypertension. 2010;55:1389–97.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Hygiene 2012

Authors and Affiliations

  • Akio Koizumi
    • 1
  • Hatasu Kobayashi
    • 1
  • Wanyang Liu
    • 1
  • Yukiko Fujii
    • 1
  • S. T. M. L. D. Senevirathna
    • 1
  • Shanika Nanayakkara
    • 1
  • Hiroko Okuda
    • 1
  • Toshiaki Hitomi
    • 1
  • Kouji H. Harada
    • 1
  • Katsunobu Takenaka
    • 2
  • Takao Watanabe
    • 3
  • Shinichiro Shimbo
    • 4
  1. 1.Department of Health and Environmental Sciences, Graduate School of MedicineKyoto UniversityKyotoJapan
  2. 2.Department of NeurosurgeryTakayama Red Cross HospitalTakayamaJapan
  3. 3.Department of EducationTohoku Bunkyo CollegeYamagataJapan
  4. 4.Department of Food and NutritionKyoto Women’s UniversityKyotoJapan

Personalised recommendations