Environmental Health and Preventive Medicine

, Volume 14, Issue 4, pp 235–246

Paradoxical increases in serum levels of highly chlorinated PCBs in aged women in clear contrast to robust decreases in dietary intakes from 1980 to 2003 in Japan

  • Akio Koizumi
  • Kouji H. Harada
  • Bita Eslami
  • Yoshinori Fujimine
  • Noriyuki Hachiya
  • Iwao Hirosawa
  • Kayoko Inoue
  • Sumiko Inoue
  • Shigeki Koda
  • Yukinori Kusaka
  • Katsuyuki Murata
  • Kazuyuki Omae
  • Norimitsu Saito
  • Shinichiro Shimbo
  • Katsunobu Takenaka
  • Tatsuya Takeshita
  • Hidemi Todoriki
  • Yasuhiko Wada
  • Takao Watanabe
  • Masayuki Ikeda
Regular Article

Abstract

Objective

Exposure to polychlorinated biphenyls (PCBs) is considered to have culminated between 1950 and 1970 in Japan, and exposure through diet, the major exposure route, has decreased significantly over the last 10 years. The primary goal of the present study was to investigate the long-term trends and congener profiles of serum and dietary levels of PCBs using historical samples.

Methods

Using banked samples collected in 1980, 1995, and 2003 surveys, we determined the daily intakes and serum concentrations of 13 PCB congeners (#74, #99, #118, #138, #146, #153, #156, #163, #164, #170, #180, #182, and #187) in women.

Results

The total daily PCB intake [ng/day, geometric mean (geometric standard deviation)] decreased significantly from 523 (2.5) in 1980 to 63 (3.2) in 2003. The serum total PCB level (ng/g lipid) in women <40 years of age decreased significantly from 185 (1.8) in 1980 to 68 (1.8) in 2003. In contrast, the level in women >50 years of age increased significantly from 125 (1.7) in 1980 to 242 (1.7) in 2003. Specifically, the serum concentrations of hexa (#138, #146, #153, #156, #163, and #164) and hepta (#170, #180, #182, and #187) congeners increased significantly. A comparison of the serum PCB levels of women born from 1940 to 1953 revealed that their serum total PCB level was significantly higher in the 2003 survey [242 (1.7), n = 9] than in the 1995 [128 (2.0), n = 17] surveys. This increase in the total PCB level was attributable to increases in the hepta congener groups.

Conclusion

Present results suggest a decreased rate of elimination of hepta congeners with aging in females, rather than a birth-generation phenomenon.

Keywords

Polychlorinated biphenyl Congener profiles Diet Serum Aging Decrease in metabolism 

References

  1. 1.
    Solomon GM, Weiss PM. Chemical contaminants in breast milk: time trends and regional variability. Environ Health Perspect. 2002;110:A339–47.PubMedGoogle Scholar
  2. 2.
    Sjodin A, Jones RS, Focant JF, Lapeza C, Wang RY, McGahee EE 3rd, et al. Retrospective time-trend study of polybrominated diphenyl ether and polybrominated and polychlorinated biphenyl levels in human serum from the United States. Environ Health Perspect. 2004;112:654–8.PubMedGoogle Scholar
  3. 3.
    Dachs J, Lohmann R, Ockenden WA, Mejanelle L, Eisenreich SJ, Jones KC. Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environ Sci Technol. 2002;36:4229–37.PubMedCrossRefGoogle Scholar
  4. 4.
    Watanabe T, Zhang ZW, Moon CS, Shimbo S, Nakatsuka H, Matsuda-Inoguchi N, et al. Cadmium exposure of women in general populations in Japan during 1991–1997 compared with 1977–1981. Int Arch Occup Environ Health. 2000;73:26–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Watanabe T, Koizumi A, Fujita H, Kumai M, Ikeda M. Dietary cadmium intakes of farmers in nonpolluted areas in Japan, and the relation with blood cadmium levels. Environ Res. 1985;37:33–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Koizumi A, Yoshinaga T, Harada K, Inoue K, Morikawa A, Muroi J, et al. Assessment of human exposure to polychlorinated biphenyls and polybrominated diphenyl ethers in Japan using archived samples from the early 1980s and mid-1990s. Environ Res. 2005;99:31–9.PubMedCrossRefGoogle Scholar
  7. 7.
    DeCaprio AP, Johnson GW, Tarbell AM, Carpenter DO, Chiarenzelli JR, Morse GS, et al. Polychlorinated biphenyl (PCB) exposure assessment by multivariate statistical analysis of serum congener profiles in an adult Native American population. Environ Res. 2005;98:284–302.PubMedCrossRefGoogle Scholar
  8. 8.
    Bates MN, Buckland SJ, Garrett N, Ellis H, Needham LL, Patterson DG Jr, et al. Persistent organochlorines in the serum of the non-occupationally exposed New Zealand population. Chemosphere. 2004;54:1431–43.PubMedCrossRefGoogle Scholar
  9. 9.
    De Saeger S, Sergeant H, Piette M, Bruneel N, Van de Voorde W, Van Peteghem C. Monitoring of polychlorinated biphenyls in Belgian human adipose tissue samples. Chemosphere. 2005;58:953–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Apostoli P, Magoni M, Bergonzi R, Carasi S, Indelicato A, Scarcella C, et al. Assessment of reference values for polychlorinated biphenyl concentration in human blood. Chemosphere. 2005;61:413–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Masuda Y, Haraguchi K, Kono S. Peculiar remaining of some PCB congeners in the patients with Yusho for more than 30 years. Fukuoka Igaku Zasshi. 2003;94:136–43.PubMedGoogle Scholar
  12. 12.
    Safe S. Toxicology, structure-function relationship, and human and environmental health impacts of polychlorinated biphenyls:progress and problems. Environ Health Perspect. 1992;100:259–68.CrossRefGoogle Scholar
  13. 13.
    Brown JF Jr, Lawton RW, Morgan CB. PCB metabolism, persistence, and health effects after occupational exposure: implications for risk assessment. Chemosphere. 1994;29:2287–94.PubMedCrossRefGoogle Scholar
  14. 14.
    Ariyoshi N, Oguri K, Koga N, Yoshimura H, Funae Y. Metabolism of highly persisitent PCB congener, 2,4,5,2′,4′,5′-hexachlorobiphenyl, by human CYP2B6. Biochem Biophys Res Commun. 1995;212:455–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Hovander L, Malmberg M, Athanasiadou I, Rahm S, Bergman A, Klasson Wheler E. Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch Environ Contam Toxicol. 2002;42:105–17.PubMedCrossRefGoogle Scholar
  16. 16.
    Kinirons MT, O’Mahony MS. Drug metabolism and ageing. Br J Clin Pharmacol. 2004;57:540–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Gladen BC, Doucet J, Hansen LG. Assessing human polychlorinated biphenyl contamination for epidemiologic studies: lessons from patterns of congener concentrations in Canadians in 1992. Environ Health Perspect. 2003;111:437–43.PubMedGoogle Scholar
  18. 18.
    Hites RA. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ Sci Technol. 2004;38:945–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Hirai T, Fujimine Y, Watanabe S, Nakano T. Congener-specific analysis of polychlorinated biphenyl in human blood from Japanese. Environ Geochem Health. 2005;27:65–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Phillips DL, Pirkle JL, Burse VW, Bernert JTJ, Henderson LO, Needham LL. Chlorinated hydrocarbon levels in human serum: effects of fasting and feeding. Arch Environ Contam Toxicol. 1989;18:495–500.PubMedCrossRefGoogle Scholar
  21. 21.
    Chiba K, Koizumi A, Kumai M, Watanabe T, Ikeda M. Nationwide survey of high-density lipoprotein cholesterol among farmers in Japan. Prev Med. 1983;12:508–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Shirai JH, Kissel JC. Uncertainty in estimated half-lives of PCBS in humans: impact on exposure assessment. Sci Total Environ. 1996;187:199–210.PubMedCrossRefGoogle Scholar
  23. 23.
    Winneke G, Walkowiak J, Lilienthal H. PCB-induced neurodevelopmental toxicity in human infants and its potential mediation by endocrine dysfunction. Toxicology. 2002;181–182:161–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Laden F, Ishibe N, Hankinson SE, Wolff MS, Gertig DM, Hunter DJ, et al. Polychlorinated biphenyls, cytochrome P450 1A1, and breast cancer risk in the Nurses’ Health Study. Cancer Epidemiol Biomarkers Prev. 2002;11:1560–5.PubMedGoogle Scholar
  25. 25.
    Mallin K, McCann K, D’Aloisio A, Freels S, Piorkowski J, Dimos J, et al. Cohort mortality study of capacitor manufacturing workers, 1944–2000. J Occup Environ Med. 2004;46:565–76.PubMedCrossRefGoogle Scholar
  26. 26.
    Verkasalo PK, Kokki E, Pukkala E, Vartiainen T, Kiviranta H, Penttinen A, et al. Cancer risk near a polluted river in Finland. Environ Health Perspect. 2004;112:1026–31.PubMedGoogle Scholar
  27. 27.
    Zhang Y, Wise JP, Holford TR, Xie H, Boyle P, Zahm SH, et al. Serum polychlorinated biphenyls, cytochrome P-450 1A1 polymorphisms, and risk of breast cancer in Connecticut women. Am J Epidemiol. 2004;160:1177–83.PubMedGoogle Scholar
  28. 28.
    Ritchie JM, Vial SL, Fuortes LJ, Robertson LW, Guo H, Reedy VE, et al. Comparison of proposed frameworks for grouping polychlorinated biphenyl congener data applied to a case-control pilot study of prostate cancer. Environ Res. 2005;98:104–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Moysich KB, Shields PG, Freudenheim JL, Schisterman EF, Vena JE, Kostyniak P, et al. Polychlorinated biphenyls, cytochrome P4501A1 polymorphism, and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1999;8:41–4.PubMedGoogle Scholar
  30. 30.
    Moysich KB, Ambrosone CB, Mendola P, Kostyniak PJ, Greizerstein HB, Vena JE, et al. Exposures associated with serum organochlorine levels among postmenopausal women from western New York State. Am J Ind Med. 2002;41:102–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Duarte-Davidson R, Jones KC. Polychlorinated biphenyls (PCBs) in the UK population: estimated intake, exposure and body burden. Sci Total Environ. 1994;151:131–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Sandanger TM, Brustad M, Odland JO, Doudarev AA, Miretsky GI, Chaschin V, et al. Human plasma levels of POPs, and diet among native people from Uelen, Chukotka. J Environ Monit. 2003;5:689–96.PubMedCrossRefGoogle Scholar
  33. 33.
    Glynn AW, Granath F, Aune M, Atuma S, Darnerud PO, Bjerselius R, et al. Organochlorines in Swedish women: determinants of serum concentrations. Environ Health Perspect. 2003;111:349–55.PubMedGoogle Scholar
  34. 34.
    Hagmar L, Wallin E, Vessby B, Jonsson BA, Bergman A, Rylander L. Intra-individual variations and time trends 1991–2001 in human serum levels of PCB, DDE and hexachlorobenzene. Chemosphere. 2006;64:1507–13.PubMedCrossRefGoogle Scholar
  35. 35.
    Breivik K, Alcock R, Li YF, Bailey RE, Fiedler H, Pacyna JM. Primary sources of selected POPs: regional and global scale emission inventories. Environ Pollut. 2004;128:3–16.PubMedCrossRefGoogle Scholar
  36. 36.
    Liem AKD, Theelen RMC, Dioxins: chemical analysis, exposure and risk assessment [Doctor thesis Thesis]. University of Utrecht, Utrecht.Google Scholar

Copyright information

© The Japanese Society for Hygiene 2009

Authors and Affiliations

  • Akio Koizumi
    • 1
  • Kouji H. Harada
    • 1
  • Bita Eslami
    • 1
  • Yoshinori Fujimine
    • 2
  • Noriyuki Hachiya
    • 3
  • Iwao Hirosawa
    • 4
  • Kayoko Inoue
    • 1
  • Sumiko Inoue
    • 1
  • Shigeki Koda
    • 5
  • Yukinori Kusaka
    • 6
  • Katsuyuki Murata
    • 7
  • Kazuyuki Omae
    • 8
  • Norimitsu Saito
    • 9
  • Shinichiro Shimbo
    • 10
  • Katsunobu Takenaka
    • 11
  • Tatsuya Takeshita
    • 12
  • Hidemi Todoriki
    • 13
  • Yasuhiko Wada
    • 14
  • Takao Watanabe
    • 15
  • Masayuki Ikeda
    • 16
  1. 1.Department of Health and Environmental Sciences, Graduate School of MedicineKyoto UniversityKyotoJapan
  2. 2.Otsuka Pharmaceutical Company LtdTokushimaJapan
  3. 3.National Institute for Minamata DiseaseMinamataJapan
  4. 4.Kansai University of Welfare SciencesOsakaJapan
  5. 5.National Institute of Occupational Safety and Health, JapanKawasakiJapan
  6. 6.School of MedicineUniversity of FukuiMatsuokaJapan
  7. 7.Akita University School of MedicineAkitaJapan
  8. 8.School of MedicineKeio UniversityTokyoJapan
  9. 9.Research Institute for Environmental Sciences and Public Health of Iwate PrefectureMoriokaJapan
  10. 10.Kyoto Women’s UniversityKyotoJapan
  11. 11.Takayama Red Cross HospitalTakayamaJapan
  12. 12.Wakayama Medical UniversityWakayamaJapan
  13. 13.School of MedicineUniversity of the RyukyusNishiharaJapan
  14. 14.Japan Labour Health and Welfare OrganizationKansai Rosai HospitalAmagasakiJapan
  15. 15.Miyagi University of EducationSendaiJapan
  16. 16.Kyoto Industrial Health AssociationKyotoJapan

Personalised recommendations