Environmental Health and Preventive Medicine

, Volume 14, Issue 4, pp 216–222

Cytokine alteration and speculated immunological pathophysiology in silicosis and asbestos-related diseases

  • Shuko Murakami
  • Yasumitsu Nishimura
  • Megumi Maeda
  • Naoko Kumagai
  • Hiroaki Hayashi
  • Ying Chen
  • Masayasu Kusaka
  • Takumi Kishimoto
  • Takemi Otsuki
Special Feature Biological effects of fibrous and particulate substances and related areas


This review is partly composed of the presentation “Cytokine alteration and speculated immunological pathophysiology in silicosis and asbestos-related diseases” delivered during the symposium “Biological effects of fibrous and particulate substances and related areas” organized by the Study Group of Fibrous and Particulate Studies of the Japanese Society of Hygiene and held at the 78th Annual Meeting in Kumamoto, Japan. In this review, we briefly introduce the results of recent immunological analysis using the plasma of silica and asbestos-exposed patients diagnosed with silicosis, pleural plaque, or malignant mesothelioma. Thereafter, experimental background and speculation concerning the immunological pathophysiology of silica and asbestos-exposed patients are discussed.


Asbestos Silica Silicosis Mesothelioma Cytokine 


  1. 1.
    Otsuki T. Immunotoxicological researches and preventive medicine. Foreword—the report from the 13th Annual Meeting of the Japanese Society of Immunotoxicology (JSIT 2006). Environ Health Prev Med. 2007;12:151–2.CrossRefGoogle Scholar
  2. 2.
    Otsuki T, Miura Y, Maeda M, Hayashi H, Dong M, Nishimura Y. Keynote lecture in the 13th Japanese Society of Immunotoxicology (JSIT 2006)—pathophysiological development and immunotoxicology: what we have found from the researches related to the silica and silicate such as asbestos. Environ Health Prev Med. 2007;12:153–64.CrossRefGoogle Scholar
  3. 3.
    Otsuki T. Reviews of a symposium entitled “malignant mesothelioma” organized by the Study Group on Fibrous and Particulate Substances of the 77th Annual Meeting of the Japanese Society of Hygiene, 2007. Environ Health Prev Med. 2008;13:53–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Miura Y, Nishimura Y, Maeda M, Murakami S, Hayashi H, Fukuoka K, et al. Immunological alterations found in mesothelioma patients and their experimental evidences. Environ Health Prev Med. 2008;13:55–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Takahashi K, Otsuki T, Mase A, Kawado T, Kotani M, Ami K, et al. Negatively-charged air conditions and responses of the human psycho-neuro-endocrino-immune network. Environ Int. 2008;34:765–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Guidelines for the Use of the ILO International Classification of Radiographs of Pneumoconioses, Revised Edition 2000, ILO (International Labour Organization), Geneva, Switzerland.Google Scholar
  7. 7.
    Miyoshi I, Kubonishi I, Yoshimoto S, Akagi T, Ohtsuki Y, Shiraishi Y, et al. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature. 1981;294:770–1.PubMedCrossRefGoogle Scholar
  8. 8.
    Hyodoh F, Takata-Tomokuni A, Miura Y, Sakaguchi H, Hatayama T, Hatada S, et al. Inhibitory effects of anti-oxidants on apoptosis of a human polyclonal T cell line, MT-2, induced by an asbestos, chrysotile-A. Scand J Immunol. 2005;61:442–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Otsuki T, Maeda M, Murakami S, Hayashi H, Miura Y, Kusaka M, et al. Immunological effects of silica and asbestos. Cell Mol Immunol. 2007;4:261–8.PubMedGoogle Scholar
  10. 10.
    Maeda M, Miura Y, Nishimura Y, Murakami S, Hayashi H, Kumagai N, et al. Immunological changes in mesothelioma patients and their experimental detection. Clin Med Circ Resp Pulm Med. 2008;2:11–7.Google Scholar
  11. 11.
    Saffiotti U. Respiratory tract carcinogenesis by mineral fibres and dusts: models and mechanisms. Monaldi Arch Chest Dis. 1998;53:160–7.PubMedGoogle Scholar
  12. 12.
    Kamp DW, Graceffa P, Pryor WA, Weitzman SA. The role of free radicals in asbestos-induced diseases. Free Radic Biol Med. 1992;12:293–315.PubMedCrossRefGoogle Scholar
  13. 13.
    Brody AR, Liu JY, Brass D, Corti M. Analyzing the genes and peptide growth factors expressed in lung cells in vivo consequent to asbestos exposure and in vitro. Environ Health Perspect. 1997;105S5:1165–71.CrossRefGoogle Scholar
  14. 14.
    Pass HI, Mew DJ. In vitro and in vivo studies of mesothelioma. J Cell Biochem Suppl. 1996;24:142–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Godleski JJ. Role of asbestos in etiology of malignant pleural mesothelioma. Thorac Surg Clin. 2004;14:479–87.PubMedCrossRefGoogle Scholar
  16. 16.
    Miura Y, Nishimura Y, Katsuyama H, Maeda M, Hayashi H, Dong M, et al. Involvement of IL-10 and Bcl-2 in resistance against an asbestos-induced apoptosis of T cells. Apoptosis. 2006;11:1825–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Alas S, Bonavida B. Rituximab inactivates signal transducer and activation of transcription 3 (STAT3) activity in B-non-Hodgkin’s lymphoma through inhibition of the interleukin 10 autocrine/paracrine loop and results in down-regulation of Bcl-2 and sensitization to cytotoxic drugs. Cancer Res. 2001;61:5137–44.PubMedGoogle Scholar
  18. 18.
    Alas S, Bonavida B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res. 2003;9:316–26.PubMedGoogle Scholar
  19. 19.
    Hori S, Takahashi T, Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol. 2003;81:331–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.PubMedCrossRefGoogle Scholar
  21. 21.
    Askenasy N, Kaminitz A, Yarkoni S. Mechanisms of T regulatory cell function. Autoimmun Rev. 2008;7:370–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev. 2006;212:28–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu H, Leung BP. CD4+CD25+ regulatory T cells in health and disease. Clin Exp Pharmacol Physiol. 2006;33:519–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Kurebayashi J. Regulation of interleukin-6 secretion from breast cancer cells and its clinical implications. Breast Cancer. 2000;7:124–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Atreya R, Neurath MF. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol. 2005;28:187–96.PubMedCrossRefGoogle Scholar
  26. 26.
    Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41:2502–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Upham JW, Garlepp MJ, Musk AW, Robinson BW. Malignant mesothelioma: new insights into tumour biology and immunology as a basis for new treatment approaches. Thorax. 1995;50:887–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Fitzpatrick DR, Peroni DJ, Bielefeldt-Ohmann H. The role of growth factors and cytokines in the tumorigenesis and immunobiology of malignant mesothelioma. Am J Respir Cell Mol Biol. 1995;12:455–60.PubMedGoogle Scholar
  29. 29.
    Tomokuni A, Aikoh T, Matsuki T, Isozaki Y, Otsuki T, Kita S, et al. Elevated soluble Fas/APO-1 (CD95) levels in silicosis patients without clinical symptoms of autoimmune diseases or malignant tumours. Clin Exp Immunol. 1997;110:303–9.PubMedGoogle Scholar
  30. 30.
    Otsuki T, Sakaguchi H, Tomokuni A, Aikoh T, Matsuki T, Kawakami Y, et al. Soluble Fas mRNA is dominantly expressed in cases with silicosis. Immunology. 1998;94:258–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Otsuki T, Ichihara K, Tomokuni A, Sakaguchi H, Aikoh T, Matsuki T, et al. Evaluation of cases with silicosis using the parameters related to Fas-mediated apoptosis. Int J Mol Med. 1999;4:407–11.PubMedGoogle Scholar
  32. 32.
    Tomokuni A, Otsuki T, Isozaki Y, Kita S, Ueki H, Kusaka M, et al. Serum levels of soluble Fas ligand in patients with silicosis. Clin Exp Immunol. 1999;118:441–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Otsuki T, Sakaguchi H, Tomokuni A, Aikoh T, Matsuki T, Isozaki Y, et al. Detection of alternatively spliced variant messages of Fas gene and mutational screening of Fas and Fas ligand coding regions in peripheral blood mononuclear cells derived from silicosis patients. Immunol Lett. 2000;72:137–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Uber CL, McReynolds RA. Immunotoxicology of silica. Crit Rev Toxicol. 1982;10:303–19.PubMedCrossRefGoogle Scholar
  35. 35.
    Steenland K, Goldsmith DF. Silica exposure and autoimmune diseases. Am J Ind Med. 1995;28:603–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Shanklin DR, Smalley DL. The immunopathology of siliconosis. History, clinical presentation, and relation to silicosis and the chemistry of silicon and silicone. Immunol Res. 1998;18:125–73.PubMedCrossRefGoogle Scholar
  37. 37.
    Otsuki T, Miura Y, Nishimura Y, Hyodoh F, Takata A, Kusaka M, et al. Alterations of Fas and Fas-related molecules in patients with silicosis. Exp Biol Med (Maywood). 2006;231:522–33.Google Scholar
  38. 38.
    Romagnani S. Type 1 T helper and type 2 T helper cells: functions, regulation and role in protection and disease. Int J Clin Lab Res. 1991;21:152–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev. 1996:532–62.Google Scholar
  40. 40.
    Caplan A. Rheumatoid disease and pneumoconiosis (Caplan’s syndrome). Proc R Soc Med. 1959;52:1111–3.PubMedGoogle Scholar
  41. 41.
    Morgan WK. Caplan’s syndrome, An interesting clinico-pathological occurrence. Ann Intern Med. 1961;55:667–72.PubMedGoogle Scholar
  42. 42.
    Caplan A, Payne RB, Withey JL. A broader concept of Caplan’s syndrome related to rheumatoid factors. Thorax. 1962;17:205–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Wu P, Hyodoh F, Hatayama T, Sakaguchi H, Hatada S, Miura Y, et al. Induction of CD69 antigen expression in peripheral blood mononuclear cells on exposure to silica, but not by asbestos/chrysotile-A. Immunol Lett. 2005;98:145–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Wu P, Miura Y, Hyodoh F, Nishimura Y, Hatayama T, Hatada S, et al. Reduced function of CD4+25+ regulatory T cell fraction in silicosis patients. Int J Immunopathol Pharmacol. 2006;19:357–68.PubMedGoogle Scholar
  45. 45.
    Chen S, Ishii N, Ine S, Ikeda S, Fujimura T, Ndhlovu LC, et al. Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells. Int Immunol. 2006;18:269–77.PubMedCrossRefGoogle Scholar
  46. 46.
    Matsubara Y, Hori T, Morita R, Sakaguchi S, Uchiyama T. Delineation of immunoregulatory properties of adult T-cell leukemia cells. Int J Hematol. 2006;84:63–9.CrossRefGoogle Scholar
  47. 47.
    Shimauchi T, Kabashima K, Tokura Y. Adult T-cell leukemia/lymphoma cells from blood and skin tumors express cytotoxic T lymphocyte-associated antigen-4 and Foxp3 but lack suppressor activity toward autologous CD8+ T cells. Cancer Sci. 2008;99:98–106.PubMedGoogle Scholar
  48. 48.
    Abe M, Uchihashi K, Kazuto T, Osaka A, Yanagihara K, Tsukasaki K, et al. Foxp3 expression on normal and leukemic CD4(+)D25(+)T-cells implicated in human T-cell leukemia virus type-1 is inconsistent with Treg cells. Eur J Haematol. 2008, 28 May [Epub ahead of print].Google Scholar
  49. 49.
    Ilgren EB, Wagner JC. Background incidence of mesothelioma: animal and human evidence. Regul Toxicol Pharmacol. 1991;13:133–49.PubMedCrossRefGoogle Scholar
  50. 50.
    Lanphear BP, Buncher CR. Latent period for malignant mesothelioma of occupational origin. J Occup Med. 1992;34:718–21.PubMedGoogle Scholar
  51. 51.
    O’Reilly KM, Mclaughlin AM, Beckett WS, Sime PJ. Asbestos-related lung disease. Am Fam Physician. 2007;75:683–8.PubMedGoogle Scholar
  52. 52.
    Burgess SJ, Maasho K, Masilamani M, Narayanan S, Borrego F, Coligan JE. The NKG2D receptor: immunobiology and clinical implications. Immunol Res. 2008;40:18–34.PubMedCrossRefGoogle Scholar
  53. 53.
    Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9:503–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Mescher MF, Popescu FE, Gerner M, Hammerbeck CD, Curtsinger JM. Activation-induced non-responsiveness (anergy) limits CD8 T cell responses to tumors. Semin Cancer Biol. 2007;17:299–308.PubMedCrossRefGoogle Scholar
  55. 55.
    Kalinski P, Nakamura Y, Watchmaker P, Giermasz A, Muthuswamy R, Mailliard RB. Helper roles of NK and CD8+ T cells in the induction of tumor immunity. Polarized dendritic cells as cancer vaccines. Immunol Res. 2006;36(1–3):137–46.PubMedCrossRefGoogle Scholar
  56. 56.
    Hong C, Park SH. Application of natural killer T cells in antitumor immunotherapy. Crit Rev Immunol. 2007;27:511–25.PubMedGoogle Scholar
  57. 57.
    Terabe M, Berzofsky JA. NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol. 2007;28:491–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Froom P, Lahat N, Kristal-Boneh E, Cohen C, Lerman Y, Ribak J. Circulating natural killer cells in retired asbestos cement workers. J Occup Environ Med. 2000;42:19–24.PubMedCrossRefGoogle Scholar
  59. 59.
    Craighead JE. Nonthracic cancers possibly resulting from asbestos exposure. In: Craighead JE, Gibbs AR, editors. Asbestos and its diseases. New York: Oxford University Press; 2008. p. 230–52.Google Scholar

Copyright information

© The Japanese Society for Hygiene 2008

Authors and Affiliations

  • Shuko Murakami
    • 1
  • Yasumitsu Nishimura
    • 1
  • Megumi Maeda
    • 1
  • Naoko Kumagai
    • 1
  • Hiroaki Hayashi
    • 1
  • Ying Chen
    • 1
  • Masayasu Kusaka
    • 2
  • Takumi Kishimoto
    • 3
  • Takemi Otsuki
    • 1
  1. 1.Department of HygieneKawasaki Medical SchoolKurashikiJapan
  2. 2.Kusaka HospitalBizenJapan
  3. 3.Okayama Rosai HospitalOkayamaJapan

Personalised recommendations