Cellular and Molecular Bioengineering

, Volume 12, Issue 2, pp 153–163 | Cite as

Differential Effects of the Antioxidants N-Acetylcysteine and Pyrrolidine Dithiocarbamate on Mesenchymal Stem Cell Chondrogenesis

  • Suwimol Tangtrongsup
  • John D. KisidayEmail author



Mesenchymal stem cell (MSC) chondrogenesis is associated with increases in intracellular reactive oxygen species (ROS), which may result in oxidative stress that is detrimental to cartilage regeneration. This study evaluated the ability of the antioxidants N-acetylcysteine (NAC) or pyrrolidine dithiocarbamate (PDTC) to reduce intracellular ROS, and their effect on MSC chondrogenesis and maturation of cartilage-like extracellular matrix.


Equine bone marrow MSCs were cultured in serum-supplemented chondrogenic medium with or without NAC or PDTC. ROS was quantified in monolayer after 8 and 72 h of culture. MSCs were seeded into agarose, cultured for 15 days, and analyzed for viable cell density, glycosaminoglycan (GAG) and hydroxyproline accumulation, and collagen gene expression. PDTC cultures were evaluated for oxidative damage by protein carbonylation, and mechanical properties via compressive testing.


NAC significantly lowered levels of ROS after 8 but not 72 h, and suppressed GAG accumulation (70%). In secondary experiments using serum-free medium, NAC significantly increased levels of ROS at 72 h, and lowered cell viability and extracellular matrix accumulation. PDTC significantly reduced levels of ROS (~ 30%) and protein carbonylation (27%), and enhanced GAG accumulation (20%). However, the compressive modulus for PDTC-treated samples was significantly lower (40%) than controls. Gene expression was largely unaffected by the antioxidants.


NAC demonstrated a limited ability to reduce intracellular ROS in chondrogenic culture, and generally suppressed accumulation of extracellular matrix. Conversely, PDTC was an effective antioxidant that enhanced GAG accumulation, although the concomitant reduction in compressive properties is a significant limitation for cartilage repair.


Chondrogenesis Mesenchymal stem cells Reactive oxygen species Antioxidant N-Acetylcysteine Pyrrolidine dithiocarbamate 


Conflict of interest

Suwimol Tangtrongsup declares that she has no conflict of interest. John Kisiday owns stock in Advanced Regenerative Therapies and Regenerative Sciences.


  1. 1.
    Amin, A. R., P. E. Di Cesare, P. Vyas, M. Attur, E. Tzeng, T. R. Billiar, S. A. Stuchin, and S. B. Abramson. The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: Evidence for up-regulated neuronal nitric oxide synthase. J. Exp. Med. 182:2097–2102, 1995.CrossRefGoogle Scholar
  2. 2.
    Arsalane, K., C. M. Dubois, T. Muanza, R. Begin, F. Boudreau, C. Asselin, and A. M. Cantin. Transforming growth factor-beta1 is a potent inhibitor of glutathione synthesis in the lung epithelial cell line A549: Transcriptional effect on the GSH rate-limiting enzyme gamma-glutamylcysteine synthetase. Am. J. Respir. Cell Mol. Biol. 17:599–607, 1997.CrossRefGoogle Scholar
  3. 3.
    Athens, A. A., E. A. Makris, and J. C. Hu. Induced collagen cross-links enhance cartilage integration. PLoS ONE 8:e60719, 2013.CrossRefGoogle Scholar
  4. 4.
    Bates, E. J., C. C. Johnson, and D. A. Lowther. Inhibition of proteoglycan synthesis by hydrogen peroxide in cultured bovine articular cartilage. Biochim. Biophys. Acta 838:221–228, 1985.CrossRefGoogle Scholar
  5. 5.
    Chen, C. T., Y. R. Shih, T. K. Kuo, O. K. Lee, and Y. H. Wei. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells. 26:960–968, 2008.CrossRefGoogle Scholar
  6. 6.
    Das, K. C., Y. Lewis-Molock, and C. W. White. Activation of Nf-kappa B and elevation of MnSOD gene expression by thiol reducing agents in lung adenocarcinoma (A549) cells. Am. J. Physiol. 269:L588–602, 1995.Google Scholar
  7. 7.
    Das, R., H. Jahr, G. J. van Osch, and E. Farrell. The role of hypoxia in bone marrow-derived mesenchymal stem cells: Considerations for regenerative medicine approaches. Tissue Eng Part B Rev. 16:159–168, 2010.CrossRefGoogle Scholar
  8. 8.
    Erler, J. T., K. L. Bennewith, M. Nicolau, N. Dornhofer, C. Kong, Q. T. Le, J. T. Chi, S. S. Jeffrey, and A. J. Giaccia. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226, 2006.CrossRefGoogle Scholar
  9. 9.
    Farndale, R. W., D. J. Buttle, and A. J. Barrett. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 883:173–177, 1986.CrossRefGoogle Scholar
  10. 10.
    Frank, E. H., M. Jin, A. M. Loening, M. E. Levenston, and A. J. Grodzinsky. A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J. Biomech. 33:1523–1527, 2000.CrossRefGoogle Scholar
  11. 11.
    Ghezzi, P., V. Jaquet, F. Marcucci, and H. Schmidt. The oxidative stress theory of disease: Levels of evidence and epistemological aspects. Br. J. Pharmacol. 174:1784–1796, 2017.CrossRefGoogle Scholar
  12. 12.
    Guadall, A., M. Orriols, J. F. Alcudia, V. Cachofeiro, J. Martinez-Gonzalez, and C. Rodriguez. Hypoxia-induced ROS signaling is required for lox up-regulation in endothelial cells. Front. Biosci. (Elite Ed). 3:955–967, 2011.Google Scholar
  13. 13.
    Hansen, J. M., E. W. Carney, and C. Harris. Altered differentiation in rat and rabbit limb bud micromass cultures by glutathione modulating agents. Free Radic. Biol. Med. 31:1582–1592, 2001.CrossRefGoogle Scholar
  14. 14.
    Henrotin, Y., B. Kurz, and T. Aigner. Oxygen and reactive oxygen species in cartilage degradation: Friends or foes? Osteoarthritis Cartilage 13:643–654, 2005.CrossRefGoogle Scholar
  15. 15.
    Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238:265–272, 1998.CrossRefGoogle Scholar
  16. 16.
    Kim, K. S., H. W. Choi, H. E. Yoon, and I. Y. Kim. Reactive oxygen species generated by NADPH oxidase 2 and 4 are required for chondrogenic differentiation. J. Biol. Chem. 285:40294–40302, 2010.CrossRefGoogle Scholar
  17. 17.
    Kisiday, J. D., B. W. Hale, J. L. Almodovar, C. M. Lee, M. J. Kipper, C. Wayne McIlwraith, and D. D. Frisbie. Expansion of mesenchymal stem cells on fibrinogen-rich protein surfaces derived from blood plasma. J. Tissue Eng Regen. Med. 5:600–611, 2011.CrossRefGoogle Scholar
  18. 18.
    Kisiday, J. D., P. W. Kopesky, C. H. Evans, A. J. Grodzinsky, C. W. McIlwraith, and D. D. Frisbie. Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. J. Orthop. Res. 26:322–331, 2008.CrossRefGoogle Scholar
  19. 19.
    Kisiday, J. D., C. M. Lee, C. W. McIlwraith, and D. D. Frisbie. Induction of bone marrow mesenchymal stem cell chondrogenesis following short-term suspension culture. J. Orthop. Res. 29:26–32, 2011.CrossRefGoogle Scholar
  20. 20.
    Lam, J., S. Lu, F. K. Kasper, and A. G. Mikos. Strategies for controlled delivery of biologics for cartilage repair. Adv. Drug Deliv. Rev. 84:123–134, 2015.CrossRefGoogle Scholar
  21. 21.
    Lee, S. B., J. J. Kim, T. W. Kim, B. S. Kim, M. S. Lee, and Y. D. Yoo. Serum deprivation-induced reactive oxygen species production is mediated by romo1. Apoptosis 15:204–218, 2010.CrossRefGoogle Scholar
  22. 22.
    Lepetsos, P., and A. G. Papavassiliou. Ros/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta 576–591:2016, 1862.Google Scholar
  23. 23.
    Liu, X., Y. Xu, S. Chen, Z. Tan, K. Xiong, Y. Li, Y. Ye, Z. P. Luo, F. He, and Y. Gong. Rescue of proinflammatory cytokine-inhibited chondrogenesis by the antiarthritic effect of melatonin in synovium mesenchymal stem cells via suppression of reactive oxygen species and matrix metalloproteinases. Free Radic. Biol. Med. 68:234–246, 2014.CrossRefGoogle Scholar
  24. 24.
    Lo, Y. Y., J. A. Conquer, S. Grinstein, and T. F. Cruz. Interleukin-1 beta induction of c-fos and collagenase expression in articular chondrocytes: Involvement of reactive oxygen species. J. Cell Biochem. 69:19–29, 1998.CrossRefGoogle Scholar
  25. 25.
    Makris, E. A., D. J. Responte, N. K. Paschos, J. C. Hu, and K. A. Athanasiou. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking. Proc. Natl Acad. Sci. U.S.A. 111:E4832–4841, 2014.CrossRefGoogle Scholar
  26. 26.
    Misra, H. P. Generation of superoxide free radical during the autoxidation of thiols. J. Biol. Chem. 249:2151–2155, 1974.Google Scholar
  27. 27.
    Morita, K., T. Miyamoto, N. Fujita, Y. Kubota, K. Ito, K. Takubo, K. Miyamoto, K. Ninomiya, T. Suzuki, R. Iwasaki, M. Yagi, H. Takaishi, Y. Toyama, and T. Suda. Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification. J. Exp. Med. 204:1613–1623, 2007.CrossRefGoogle Scholar
  28. 28.
    Movafagh, S., S. Crook, and K. Vo. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: New developments in an old debate. J. Cell Biochem. 116:696–703, 2015.CrossRefGoogle Scholar
  29. 29.
    Murakami, S., V. Lefebvre, and B. de Crombrugghe. Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha. J. Biol. Chem. 275:3687–3692, 2000.CrossRefGoogle Scholar
  30. 30.
    Nakagawa, S., Y. Arai, O. Mazda, T. Kishida, K. A. Takahashi, K. Sakao, M. Saito, K. Honjo, J. Imanishi, and T. Kubo. N-Acetylcysteine prevents nitric oxide-induced chondrocyte apoptosis and cartilage degeneration in an experimental model of osteoarthritis. J. Orthop. Res. 28:156–163, 2010.Google Scholar
  31. 31.
    Pei, M., Y. Zhang, J. Li, and D. Chen. Antioxidation of decellularized stem cell matrix promotes human synovium-derived stem cell-based chondrogenesis. Stem Cells Dev. 22:889–900, 2013.CrossRefGoogle Scholar
  32. 32.
    Ranganath, S. H., O. Levy, M. S. Inamdar, and J. M. Karp. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258, 2012.CrossRefGoogle Scholar
  33. 33.
    Samuni, Y., S. Goldstein, O. M. Dean, and M. Berk. The chemistry and biological activities of N-acetylcysteine. Biochim. Biophys. Acta 4117–4129:2013, 1830.Google Scholar
  34. 34.
    Satoh, T., N. Sakai, Y. Enokido, Y. Uchiyama, and H. Hatanaka. Survival factor-insensitive generation of reactive oxygen species induced by serum deprivation in neuronal cells. Brain Res. 733:9–14, 1996.CrossRefGoogle Scholar
  35. 35.
    Scharf, B., C. C. Clement, S. Yodmuang, A. M. Urbanska, S. O. Suadicani, D. Aphkhazava, M. M. Thi, G. Perino, J. A. Hardin, N. Cobelli, G. Vunjak-Novakovic, and L. Santambrogio. Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification. Chem. Biol. 20:922–934, 2013.CrossRefGoogle Scholar
  36. 36.
    Shi, X., S. S. Leonard, S. Wang, and M. Ding. Antioxidant properties of pyrrolidine dithiocarbamate and its protection against Cr(VI)-induced DNA strand breakage. Ann. Clin. Lab. Sci. 30:209–216, 2000.Google Scholar
  37. 37.
    Somoza, R. A., J. F. Welter, D. Correa, and A. I. Caplan. Chondrogenic differentiation of mesenchymal stem cells: Challenges and unfulfilled expectations. Tissue Eng Part B Rev. 20:596–608, 2014.CrossRefGoogle Scholar
  38. 38.
    Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta 18:267–273, 1967.CrossRefGoogle Scholar
  39. 39.
    Tan, A. R., and C. T. Hung. Concise review: Mesenchymal stem cells for functional cartilage tissue engineering: Taking cues from chondrocyte-based constructs. Stem Cells Transl. Med. 6:1295–1303, 2017.CrossRefGoogle Scholar
  40. 40.
    Tangtrongsup, S., and J. D. Kisiday. Modulating the oxidative environment during mesenchymal stem cells chondrogenesis with serum increases collagen accumulation in agarose culture. J. Orthop. Res. 36(1):506–514, 2017.Google Scholar
  41. 41.
    Tangtrongsup, S., and J. D. Kisiday. Modulating the oxidative environment during mesenchymal stem cells chondrogenesis with serum increases collagen accumulation in agarose culture. J. Orthop. Res. 36:506–514, 2018.Google Scholar
  42. 42.
    Tiku, M. L., S. Gupta, and D. R. Deshmukh. Aggrecan degradation in chondrocytes is mediated by reactive oxygen species and protected by antioxidants. Free Radic. Res. 30:395–405, 1999.CrossRefGoogle Scholar
  43. 43.
    Valle-Prieto, A., and P. A. Conget. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 19:1885–1893, 2010.CrossRefGoogle Scholar
  44. 44.
    Wehling, N., G. D. Palmer, C. Pilapil, F. Liu, J. W. Wells, P. E. Muller, C. H. Evans, and R. M. Porter. Interleukin-1beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways. Arthritis Rheum. 60:801–812, 2009.CrossRefGoogle Scholar
  45. 45.
    Williams, G. M., S. M. Klisch, and R. L. Sah. Bioengineering cartilage growth, maturation, and form. Pediatr. Res. 63:527–534, 2008.CrossRefGoogle Scholar
  46. 46.
    Wu, S., J. K. Flint, G. Rezvani, and F. De Luca. Nuclear factor-kappaB p65 facilitates longitudinal bone growth by inducing growth plate chondrocyte proliferation and differentiation and by preventing apoptosis. J. Biol. Chem. 282:33698–33706, 2007.CrossRefGoogle Scholar
  47. 47.
    Zhang, D. Y., Y. Pan, C. Zhang, B. X. Yan, S. S. Yu, D. L. Wu, M. M. Shi, K. Shi, X. X. Cai, S. S. Zhou, J. B. Wang, J. P. Pan, and L. H. Zhang. Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production. Mol. Cell. Biochem. 374:13–20, 2013.CrossRefGoogle Scholar
  48. 48.
    Zhang, Y., G. Marsboom, P. T. Toth, and J. Rehman. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PLoS ONE 8:e77077, 2013.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsUSA

Personalised recommendations