Cellular and Molecular Bioengineering

, Volume 11, Issue 6, pp 519–529 | Cite as

Design and Utility of a Point-of-Care Microfluidic Platform to Assess Hematocrit and Blood Coagulation

  • Jevgenia Zilberman-Rudenko
  • Rachel M. White
  • Dmitriy A. Zilberman
  • Hari H. S. Lakshmanan
  • Rachel A. Rigg
  • Joseph J. Shatzel
  • Jeevan Maddala
  • Owen J. T. McCarty



To develop a small volume whole blood analyzer capable of measuring the hematocrit and coagulation kinetics of whole blood.

Methods and Results

A co-planar microfluidic chamber designed to facilitate self-driven capillary action across an internal electrical chip was developed and used to measure the electric parameters of whole human blood that had been anticoagulated or allowed to clot. To promote blood clotting, select chip surfaces were coated with a prothrombin time (PT) reagent containing lipidated tissue factor (TF), which activates the extrinsic pathway of coagulation to promote thrombin generation and fibrin formation. Whole human blood was added to the microfluidic device, and voltage changes within the platform were measured and interpreted using basic resistor-capacitor (RC) circuit and fluid dynamics theory. Upon wetting of the sensing zone, a circuit between two co-planar electrodes within the sensing zone was closed to generate a rapid voltage drop from baseline. The voltage then rose due to sedimentation of red blood cells (RBC) in the sensing zone. For anticoagulated blood samples, the time for the voltage to return to baseline was dependent on hematocrit. In the presence of coagulation, the initiation of fibrin formation in the presence of the PT reagent prevented the return of voltage to baseline due to the reduced packing of RBCs in the sensing zone.


The technology presented in this study has potential for monitoring the hematocrit and coagulation parameters of patient samples using a small volume of whole blood, suggesting it may hold clinical utility as a point-of-care test.


Biorheology Electrical engineering Whole blood testing Hematocrit Coagulation 



We thank Katrina Sloma, Ken Vandehey, Manish Giri and Chantelle Domingue from the Division of Research and Development, Microfluidic Technology, HP Inc. for manufacturing and supplying chips and providing electrical signal-processing software and technical support. This work was supported by grants from the National Institutes of Health (R01HL101972, R01GM116184 and F31HL13623001) and an unrestricted research contract from HP Inc. O.J.T. McCarty is an American Heart Association Established Investigator (13EIA12630000).

Conflict of interest

HP Inc. has pending patents for microfluidic device and chip technology concept and software described. R.M. White was employed by HP, Inc. during this study. J. Zilberman-Rudenko, D.A. Zilberman, H.H.S. Lakshmanan, R.A. Rigg, J.J. Shatzel, J. Maddala and O.J.T. McCarty have no conflicts of interests. Potential conflicts of interest have been reviewed and managed by the Oregon Health and Science University Conflict of Interest in Research Committee.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was received from all human blood donors. This article does not contain any studies with animals performed by any of the authors.


  1. 1.
    Aarts, P. A., S. A. van den Broek, G. W. Prins, G. D. Kuiken, J. J. Sixma, and R. M. Heethaar. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arterioscler. Dallas Tex 8:819–824, 1988.CrossRefGoogle Scholar
  2. 2.
    Ashrafuzzaman, M., and J. Tuszynski. Structure of membranes. In: Membrane Biophysics. Heidelberg: Springer, 2012, pp. 9–30.Google Scholar
  3. 3.
    Bergmeier, W., and R. O. Hynes. Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harb. Perspect. Biol. 2012. Scholar
  4. 4.
    Billett, H. H. Hemoglobin and hematocrit. In: Clinical Methods: The History, Physical, and Laboratory Examinations3rd, edited by H. K. Walker, W. D. Hall, and J. W. Hurst. Boston: Butterworths, 1990.Google Scholar
  5. 5.
    Brækkan, S. K., E. B. Mathiesen, I. Njølstad, T. Wilsgaard, and J.-B. Hansen. Hematocrit and risk of venous thromboembolism in a general population. The Tromsø study. Haematologica 95:270–275, 2010.CrossRefGoogle Scholar
  6. 6.
    Brass, L. F., and S. L. Diamond. Transport physics and biorheology in the setting of hemostasis and thrombosis. J. Thromb. Haemost. 14:906–917, 2016.CrossRefGoogle Scholar
  7. 7.
    Chebbi, R. Dynamics of blood flow: modeling of the Fåhræus-Lindqvist effect. J. Biol. Phys. 41:313–326, 2015.CrossRefGoogle Scholar
  8. 8.
    Ciciliano, J. C., Y. Sakurai, D. R. Myers, M. E. Fay, B. Hechler, S. Meeks, R. Li, J. B. Dixon, L. A. Lyon, C. Gachet, and W. A. Lam. Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach. Blood 126:817–824, 2015.CrossRefGoogle Scholar
  9. 9.
    Cummins, B. M., F. S. Ligler, and G. M. Walker. Point-of-care diagnostics for niche applications. Biotechnol. Adv. 34:161–176, 2016.CrossRefGoogle Scholar
  10. 10.
    Dorf, R. C., and J. A. Svoboda. Introduction to Electric Circuits (5th ed.). New York: Wiley, 2001.zbMATHGoogle Scholar
  11. 11.
    Engelmann, B., and S. Massberg. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13:34–45, 2013.CrossRefGoogle Scholar
  12. 12.
    Fahraeus, R. The suspension stability of the blood. Physiol. Rev. 9:241–274, 1929.CrossRefGoogle Scholar
  13. 13.
    FDA Class I recall. Alere Recalls INRatio and INRatio2 PT/INR Monitoring System Due to Incorrect Test Results. U.S. Food and Drug Administration, 2016.
  14. 14.
    Fedosov, D. A., B. Caswell, A. S. Popel, and G. E. Karniadakis. Blood flow and cell-free layer in microvessels. Microcirculation 17:615–628, 2010.CrossRefGoogle Scholar
  15. 15.
    Fernandes, H. P., C. L. Cesar, and M. D. L. Barjas-Castro. Electrical properties of the red blood cell membrane and immunohematological investigation. Rev. Bras. Hematol. E Hemoter. 33:297–301, 2011.CrossRefGoogle Scholar
  16. 16.
    Fricke, H. The electric capacity of suspensions with special reference to blood. J. Gen. Physiol. 9:137–152, 1925.CrossRefGoogle Scholar
  17. 17.
    Gaw, R. L., B. H. Cornish, and B. J. Thomas. The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation. IEEE Trans. Biomed. Eng. 55:721–727, 2008.CrossRefGoogle Scholar
  18. 18.
    Gidaspow, D., and J. Huang. Kinetic theory based model for blood flow and its viscosity. Ann. Biomed. Eng. 37:1534–1545, 2009.CrossRefGoogle Scholar
  19. 19.
    Hatschek, E. The viscosity of liquids. London: G. Bell and Sons Ltd., 1928.zbMATHGoogle Scholar
  20. 20.
    Hoetink, A. E., T. J. C. Faes, K. R. Visser, and R. M. Heethaar. On the flow dependency of the electrical conductivity of blood. IEEE Trans. Biomed. Eng. 51:1251–1261, 2004.CrossRefGoogle Scholar
  21. 21.
    Horowitz, P., and W. Hill. The art of electronics (2nd ed.). Cambridge: Cambridge University Press, 1989.Google Scholar
  22. 22.
    Hum, J., J. J. Shatzel, J. H. Jou, and T. G. Deloughery. The efficacy and safety of direct oral anticoagulants vs. traditional anticoagulants in cirrhosis. Eur. J. Haematol. 98:393–397, 2017.CrossRefGoogle Scholar
  23. 23.
    Khorana, A. A., M. Carrier, D. A. Garcia, and A. Y. Y. Lee. Guidance for the prevention and treatment of cancer-associated venous thromboembolism. J. Thromb. Thrombolysis 41:81–91, 2016.CrossRefGoogle Scholar
  24. 24.
    Kujovich, J. L. Coagulopathy in liver disease: a balancing act. Hematol. Am. Soc. Hematol. Educ. Progr 243–249:2015, 2015.Google Scholar
  25. 25.
    Kyriazi, V., and E. Theodoulou. Assessing the risk and prognosis of thrombotic complications in cancer patients. Arch. Pathol. Lab. Med. 137:1286–1295, 2013.CrossRefGoogle Scholar
  26. 26.
    Lei, K. F., K.-H. Chen, P.-H. Tsui, and N.-M. Tsang. Real-time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip. PloS ONE 8:e76243, 2013.CrossRefGoogle Scholar
  27. 27.
    Mackman, N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler. Thromb. Vasc. Biol. 24:1015–1022, 2004.CrossRefGoogle Scholar
  28. 28.
    Mackman, N. The many faces of tissue factor. J. Thromb. Haemost. 7(Suppl 1):136–139, 2009.CrossRefGoogle Scholar
  29. 29.
    Mackman, N. New insights into the mechanisms of venous thrombosis. J. Clin. Invest. 122:2331–2336, 2012.CrossRefGoogle Scholar
  30. 30.
    Maha, A. A. Effect of glucose-6-phosphate dehydrogenase deficiency on some biophysical properties of human erythrocytes. Hematology 14:38–45, 2009.CrossRefGoogle Scholar
  31. 31.
    Mangaonkar, A. A., K. P. Hoversten, and N. Gangat. Prognostic risk model for patients with high-risk polycythemia vera and essential thrombocythemia. Expert Rev. Hematol. 11:1–6, 2018.CrossRefGoogle Scholar
  32. 32.
    McClendon, J. Colloidal properties of the surface of the living cell. II. Electrical conductivity and capacity of blood to alternating currents of long duration and varying in frequency from 260 to 2,000,000 cycles per second. J. Biol. Chem. 69:733–754, 1926.Google Scholar
  33. 33.
    Merrill, E. W. Rheology of blood. Physiol. Rev. 40:863–884, 1969.CrossRefGoogle Scholar
  34. 34.
    Mistral, T., Y. Boué, J.-L. Bosson, P. Manhes, J. Greze, J. Brun, P. Albaladejo, J.-F. Payen, and P. Bouzat. Performance of point-of-care international normalized ratio measurement to diagnose trauma-induced coagulopathy. Scand. J. Trauma Resusc. Emerg. Med. 25:59, 2017.CrossRefGoogle Scholar
  35. 35.
    Moreno, M., A. Schwartz, and R. Dvorkin. The Accuracy of point-of-care creatinine testing in the emergency department. Adv. Emerg. Med. 1–5:2015, 2015.Google Scholar
  36. 36.
    Morrissey, J. H., and S. A. Smith. Polyphosphate as modulator of hemostasis, thrombosis, and inflammation. J. Thromb. Haemost. 13:S92–S97, 2015.CrossRefGoogle Scholar
  37. 37.
    Nagasawa, Y., Z. Kato, and S. Tanaka. Particle sedimentation monitoring in high-concentration slurries. AIP Adv. 6:115206, 2016.CrossRefGoogle Scholar
  38. 38.
    Ogawa, S., F. Szlam, D. Bolliger, T. Nishimura, E. P. Chen, and K. A. Tanaka. The impact of hematocrit on fibrin clot formation assessed by rotational thromboelastometry. Anesth. Analg. 115:16–21, 2012.CrossRefGoogle Scholar
  39. 39.
    Ortel, T. L. Antiphospholipid syndrome: laboratory testing and diagnostic strategies. Am. J. Hematol. 87(Suppl 1):S75–S81, 2012.CrossRefGoogle Scholar
  40. 40.
    Parsegian, A. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221:844–846, 1969.CrossRefGoogle Scholar
  41. 41.
    Pirofsky, B. The determination of blood viscosity in man by a method based on Poiseuille’s law. J. Clin. Invest. 32:292–298, 1953.CrossRefGoogle Scholar
  42. 42.
    Pries, A. R., D. Neuhaus, and P. Gaehtgens. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263:H1770–H1778, 1992.Google Scholar
  43. 43.
    Samuelson, B. T., and A. Cuker. Measurement and reversal of the direct oral anticoagulants. Blood Rev. 31:77–84, 2017.CrossRefGoogle Scholar
  44. 44.
    Stalker, T. J., J. D. Welsh, M. Tomaiuolo, J. Wu, T. V. Colace, S. L. Diamond, and L. F. Brass. A systems approach to hemostasis: 3. Thrombus consolidation regulates intrathrombus solute transport and local thrombin activity. Blood 124:1824–1831, 2014.CrossRefGoogle Scholar
  45. 45.
    Steinfelder-Visscher, J., S. Teerenstra, J. M. T. K. Gunnewiek, and P. W. Weerwind. Evaluation of the i-STAT point-of-care analyzer in critically ill adult patients. J. Extra. Corpor. Technol. 40:57–60, 2008.Google Scholar
  46. 46.
    Thiruvenkatarajan, V., A. Pruett, and S. D. Adhikary. Coagulation testing in the perioperative period. Indian J. Anaesth. 58:565–572, 2014.CrossRefGoogle Scholar
  47. 47.
    Thurston, G. B. Rheological parameters for the viscosity viscoelasticity and thixotropy of blood. Biorheology 16:149–162, 1979.CrossRefGoogle Scholar
  48. 48.
    Thurston, G. B. Plasma release-cell layering theory for blood flow. Biorheology 26:199–214, 1989.CrossRefGoogle Scholar
  49. 49.
    Thurston, G. B., and N. M. Henderson. Effects of flow geometry on blood viscoelasticity. Biorheology 43:729–746, 2006.Google Scholar
  50. 50.
    Tomaiuolo, M., T. J. Stalker, J. D. Welsh, S. L. Diamond, T. Sinno, and L. F. Brass. A systems approach to hemostasis: 2. Computational analysis of molecular transport in the thrombus microenvironment. Blood 124:1816–1823, 2014.CrossRefGoogle Scholar
  51. 51.
    Trevan, J. W. The viscosity of blood. Biochem. J. 12:60–71, 1918.CrossRefGoogle Scholar
  52. 52.
    Walton, B. L., M. Lehmann, T. Skorczewski, L. A. Holle, J. D. Beckman, J. A. Cribb, M. J. Mooberry, A. R. Wufsus, B. C. Cooley, J. W. Homeister, R. Pawlinski, M. R. Falvo, N. S. Key, A. L. Fogelson, K. B. Neeves, and A. S. Wolberg. Elevated hematocrit enhances platelet accumulation following vascular injury. Blood 129:2537–2546, 2017.CrossRefGoogle Scholar
  53. 53.
    Welsh, J. D., T. J. Stalker, R. Voronov, R. W. Muthard, M. Tomaiuolo, S. L. Diamond, and L. F. Brass. A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood 124:1808–1815, 2014.CrossRefGoogle Scholar
  54. 54.
    Westenbrink, B. D., M. Alings, C. B. Granger, J. H. Alexander, R. D. Lopes, E. M. Hylek, L. Thomas, D. M. Wojdyla, M. Hanna, M. Keltai, P. G. Steg, R. De Caterina, L. Wallentin, and W. H. van Gilst. Anemia is associated with bleeding and mortality, but not stroke, in patients with atrial fibrillation: insights from the apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (ARISTOTLE) trial. Am. Heart J. 185:140–149, 2017.CrossRefGoogle Scholar
  55. 55.
    Westerhof, N., N. Stergiopulos, and M.I.M. Noble. Law of Poiseuille. In: Snapshots of Hemodynamics Boston: Springer, 2010, pp. 9–14.Google Scholar
  56. 56.
    Zhao, T. X., B. Jacobson, and T. Ribbe. Triple-frequency method for measuring blood impedance. Physiol. Meas. 14:145–156, 1993.CrossRefGoogle Scholar
  57. 57.
    Zilberman-Rudenko, J., A. Itakura, C. P. Wiesenekker, R. Vetter, C. Maas, D. Gailani, E. I. Tucker, A. Gruber, C. Gerdes, and O. J. T. McCarty. Coagulation factor XI promotes distal platelet activation and single platelet consumption in the bloodstream under shear flow. Arterioscler. Thromb. Vasc. Biol. 36:510–517, 2016.CrossRefGoogle Scholar
  58. 58.
    Zilberman-Rudenko, J., J. L. Sylman, H. H. S. Lakshmanan, O. J. T. McCarty, and J. Maddala. Dynamics of blood flow and thrombus formation in a multi-bypass microfluidic ladder network. Cell. Mol. Bioeng. 10:1–14, 2016.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Jevgenia Zilberman-Rudenko
    • 1
  • Rachel M. White
    • 1
    • 2
  • Dmitriy A. Zilberman
    • 1
  • Hari H. S. Lakshmanan
    • 1
    • 3
  • Rachel A. Rigg
    • 1
  • Joseph J. Shatzel
    • 1
    • 4
  • Jeevan Maddala
    • 1
    • 3
  • Owen J. T. McCarty
    • 1
    • 4
  1. 1.Biomedical Engineering, School of MedicineOregon Health and Science UniversityPortlandUSA
  2. 2.Division of Research and DevelopmentMicrofluidic Technology, HP Inc.CorvallisUSA
  3. 3.Chemical and Biomedical Engineering, West Virginia UniversityMorgantownUSA
  4. 4.Division of Hematology and Medical Oncology, Department of MedicineOregon Health and Science UniversityPortlandUSA

Personalised recommendations