Advertisement

Cellular and Molecular Bioengineering

, Volume 11, Issue 6, pp 495–508 | Cite as

Inflammation and Monocyte Recruitment Due to Aging and Mechanical Stretch in Alveolar Epithelium are Inhibited by the Molecular Chaperone 4-Phenylbutyrate

  • M. S. Valentine
  • P. A. Link
  • J. A. Herbert
  • F. J. Kamga Gninzeko
  • M. B. Schneck
  • K. Shankar
  • J. Nkwocha
  • A. M. Reynolds
  • R. L. Heise
Article

Abstract

Introduction

Ventilator-Induced lung injury (VILI) is a form of acute lung injury that is initiated or exacerbated by mechanical ventilation. The aging lung is also more susceptible to injury. Harmful mechanical stretch of the alveolar epithelium is a recognized mechanism of VILI, yet little is known about how mechanical stretch affects aged epithelial cells. Disruption to Endoplasmic Reticulum (ER) homeostasis results in a condition known as ER stress that leads to disruption of cellular homeostasis, apoptosis, and inflammation. ER stress is increased with aging and other pathological stimuli. We hypothesized that age and mechanical stretch increase alveolar epithelial cells’ proinflammatory responses that are mediated by ER stress. Furthermore, we believed that inhibition of this upstream mechanism with 4PBA, an ER stress reducer, alleviates subsequent inflammation and monocyte recruitment.

Methods

Type II alveolar epithelial cells (ATII) were harvested from C57Bl6/J mice 2 months (young) and 20 months (old) of age. The cells were cyclically stretched at 15% change in surface area for up to 24 h. Prior to stretch, groups were administered 4PBA or vehicle as a control.

Results

Mechanical stretch and age upregulated ER stress and proinflammatory MCP-1/CCL2 and MIP-1β/CCL4 chemokine expression in ATIIs. Age-matched and mismatched monocyte recruitment by ATII conditioned media was also quantified.

Conclusions

Age increases susceptibility to stretch-induced ER stress and downstream inflammatory gene expression in a primary ATII epithelial cell model. Administration of 4PBA attenuated the increased ER stress and proinflammatory responses from stretch and/or age and significantly reduced monocyte migration to ATII conditioned media.

Keywords

ER stress Injury Aging Mechanotransduction VILI Alveolar epithelium 

Notes

Acknowledgments

The authors acknowledge the assistance of Niraja Bohidar in aiding in cell isolation experiments.

Funding

This study was funded by the National Institutes of Health (R01AG041823) and the National Science Foundation (CMMI-1351162).

Conflict of interest

MSV, PAL, JAH, FKG, MBS, SK, JN, AMR, and RLH declares that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

12195_2018_537_MOESM1_ESM.docx (811 kb)
Supplementary material 1 (DOCX 810 kb)

References

  1. 1.
    Andrade, P. V., J. M. dos Santos, H. C. A. Silva, D. D. Wilbert, S. S. Cavassani, and I. S. Oliveira-Júnior. Influence of hyperoxia and mechanical ventilation in lung inflammation and diaphragm function in aged versus adult rats. Inflammation 37:486–494, 2013.CrossRefGoogle Scholar
  2. 2.
    Aoshiba, K., and A. Nagai. Chronic lung inflammation in aging mice. FEBS Lett. 581:3512–3516, 2007.CrossRefGoogle Scholar
  3. 3.
    Benhamou, D., J. F. Muir, and B. Melen. Mechanical ventilation in elderly patients. Monaldi Arch. Chest Dis. Arch. Monaldi Mal Torace 53:547–551, 1998.Google Scholar
  4. 4.
    Bhandary, B., A. Marahatta, H.-R. Kim, and H.-J. Chae. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int. J. Mol. Sci. 14:434, 2013.CrossRefGoogle Scholar
  5. 5.
    Bless, N. M., M. Huber-Lang, R.-F. Guo, R. L. Warner, H. Schmal, B. J. Czermak, T. P. Shanley, L. D. Crouch, A. B. Lentsch, V. Sarma, M. S. Mulligan, H. P. Friedl, and P. A. Ward. Role of CC chemokines (macrophage inflammatory protein-1β, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats. J. Immunol. 164:2650–2659, 2000.CrossRefGoogle Scholar
  6. 6.
    Brown, M. K., and N. Naidoo. The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol. 3:263, 2012.Google Scholar
  7. 7.
    Brozzi, F., T. R. Nardelli, M. Lopes, I. Millard, J. Barthson, M. Igoillo-Esteve, F. A. Grieco, O. Villate, J. M. Oliveira, M. Casimir, M. Bugliani, F. Engin, G. S. Hotamisligil, P. Marchetti, and D. L. Eizirik. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia 58:2307–2316, 2015.CrossRefGoogle Scholar
  8. 8.
    Bystry, R. S., V. Aluvihare, K. A. Welch, M. Kallikourdis, and A. G. Betz. B cells and professional APCs recruit regulatory T cells via CCL4. Nat. Immunol. 2:1126–1132, 2001.CrossRefGoogle Scholar
  9. 9.
    Canan, C. H., N. S. Gokhale, B. Carruthers, W. P. Lafuse, L. S. Schlesinger, J. B. Torrelles, and J. Turner. Characterization of lung inflammation and its impact on macrophage function in aging. J. Leukoc. Biol. 96:473–480, 2014.CrossRefGoogle Scholar
  10. 10.
    Cavanaugh Jr., K. J., J. Oswari, and S. S. Margulies. Role of stretch on tight junction structure in alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 25(5):584–591, 2012.  https://doi.org/10.1165/ajrcmb.25.5.4486.CrossRefGoogle Scholar
  11. 11.
    Chang, J., Y. Xia, K. Wasserloos, M. Deng, K. J. Blose, D. A. Vorp, H. R. Turnquist, T. R. Billiar, B. A. Pitt, M.-Z. Zhang, and L.-M. Zhang. Cyclic stretch induced IL-33 production through HMGB1/TLR-4 signaling pathway in murine respiratory epithelial cells. PLoS ONE 12:e0184770, 2017.CrossRefGoogle Scholar
  12. 12.
    Chen, W., Y. Epshtein, X. Ni, R. O. Dull, A. E. Cress, J. G. N. Garcia, and J. R. Jacobson. Role of integrin β4 in lung endothelial cell inflammatory responses to mechanical stress. Sci. Rep. 5:16529, 2015.CrossRefGoogle Scholar
  13. 13.
    Childs, L. M., M. Paskow, S. M. Morris, Jr, M. Hesse, and S. Strogatz. From inflammation to wound healing: using a simple model to understand the functional versatility of murine macrophages. Bull. Math. Biol. 73:2575–2604, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cohen, T. S., K. J. Cavanaugh, and S. S. Margulies. Frequency and peak stretch magnitude affect alveolar epithelial permeability. Eur. Respir. J. 32:854–861, 2008.CrossRefGoogle Scholar
  15. 15.
    Corti, M., A. R. Brody, and J. H. Harrison. Isolation and primary culture of murine alveolar type II cells. Am. J. Respir. Cell Mol. Biol. 14:309–315, 1996.CrossRefGoogle Scholar
  16. 16.
    Corvol, H., F. Flamein, R. Epaud, A. Clement, and L. Guillot. Lung alveolar epithelium and interstitial lung disease. Int. J. Biochem. Cell Biol. 41:1643–1651, 2009.CrossRefGoogle Scholar
  17. 17.
    Criswell, D. S., R. A. Shanely, J. J. Betters, M. J. McKenzie, J. E. Sellman, D. L. Van Gammeren, and S. K. Powers. Cumulative effects of aging and mechanical ventilation on in vitro diaphragm function. Chest 124:2302–2308, 2003.CrossRefGoogle Scholar
  18. 18.
    Davidovich, N., B. C. DiPaolo, G. G. Lawrence, P. Chhour, N. Yehya, and S. S. Margulies. Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability. Am. J. Respir. Cell Mol. Biol. 49:156–164, 2013.CrossRefGoogle Scholar
  19. 19.
    Dolinay, D. T., D. B. E. Himes, M. M. Shumyatcher, M. G. G. Lawrence, and P. S. S. Margulies. Integrated stress response mediates epithelial injury in mechanical ventilation. Am. J. Respir. Cell Mol. Biol. 57(2):193–203, 2017.  https://doi.org/10.1165/rcmb.2016-0404oc.CrossRefGoogle Scholar
  20. 20.
    Endo, M., S. Oyadomari, M. Suga, M. Mori, and T. Gotoh. The ER stress pathway involving CHOP is activated in the lungs of LPS-treated mice. J. Biochem. (Tokyo) 138:501–507, 2005.CrossRefGoogle Scholar
  21. 21.
    Esteban, A., A. Anzueto, F. Frutos, I. Alía, L. Brochard, T. E. Stewart, S. Benito, S. K. Epstein, C. Apezteguía, P. Nightingale, A. C. Arroliga, M. J. Tobin, and Group for the MVIS. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287:345–355, 2002.CrossRefGoogle Scholar
  22. 22.
    Fan, E., D. M. Needham, and T. E. Stewart. Ventilatory management of acute lung injury and acute respiratory distress syndrome. JAMA 294:2889–2896, 2005.CrossRefGoogle Scholar
  23. 23.
    Feng, Y., Y. Amoateng-Adjepong, D. Kaufman, C. Gheorghe, and C. A. Manthous. Age, duration of mechanical ventilation, and outcomes of patients who are critically ill. Chest 136:759–764, 2009.CrossRefGoogle Scholar
  24. 24.
    Franceschi, C., and J. Campisi. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69:S4–S9, 2014.CrossRefGoogle Scholar
  25. 25.
    Frank, J. A., C. M. Wray, D. F. McAuley, R. Schwendener, and M. A. Matthay. Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury. Am. J. Physiol-Lung. Cell. Mol. Physiol. 291:L1191–L1198, 2006.CrossRefGoogle Scholar
  26. 26.
    Freund, A., A. V. Orjalo, P.-Y. Desprez, and J. Campisi. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16:238–246, 2010.CrossRefGoogle Scholar
  27. 27.
    Garg, A. D., A. Kaczmarek, O. Krysko, P. Vandenabeele, D. V. Krysko, and P. Agostinis. ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol. Med. 18:589–598, 2012.CrossRefGoogle Scholar
  28. 28.
    Gibon, E., F. Loi, L. A. Córdova, J. Pajarinen, T. Lin, L. Lu, A. Nabeshima, Z. Yao, and S. B. Goodman. Aging affects bone marrow macrophage polarization: relevance to bone healing. Regen. Eng. Transl. Med. 2:98–104, 2016.CrossRefGoogle Scholar
  29. 29.
    Goldman, J. L., S. Sammani, C. Kempf, L. Saadat, E. Letsiou, T. Wang, L. Moreno-Vinasco, A. N. Rizzo, J. D. Fortman, and J. G. N. Garcia. Pleiotropic effects of interleukin-6 in a “two-hit” murine model of acute respiratory distress syndrome. Pulm. Circ. 4:280, 2014.CrossRefGoogle Scholar
  30. 30.
    Guo, R.-F., A. B. Lentsch, R. L. Warner, M. Huber-Lang, J. V. Sarma, T. Hlaing, M. M. Shi, N. W. Lukacs, and P. A. Ward. Regulatory effects of eotaxin on acute lung inflammatory injury. J. Immunol. 166:5208–5218, 2001.CrossRefGoogle Scholar
  31. 31.
    Halbertsma, F. J. J., M. Vaneker, G. J. Scheffer, and J. G. van der Hoeven. Cytokines and biotrauma in ventilator-induced lung injury: a critical review of the literature. Neth. J. Med. 63:382–392, 2005.Google Scholar
  32. 32.
    Hawwa, R. L., M. A. Hokenson, Y. Wang, Z. Huang, S. Sharma, and J. Sanchez-Esteban. IL-10 inhibits inflammatory cytokines released by fetal mouse lung fibroblasts exposed to mechanical stretch. Pediatr. Pulmonol. 46:640, 2011.CrossRefGoogle Scholar
  33. 33.
    Hegeman, M. A., S. N. T. Hemmes, M. T. Kuipers, L. D. J. Bos, G. Jongsma, J. J. T. H. Roelofs, K. F. van der Sluijs, N. P. Juffermans, M. B. Vroom, and M. J. Schultz. The extent of ventilator-induced lung injury in mice partly depends on duration of mechanical ventilation. Crit. Care Res. Pract. 2013.Google Scholar
  34. 34.
    Hegeman, M. A., M. P. Hennus, M. van Meurs, P. M. Cobelens, A. Kavelaars, N. J. Jansen, M. J. Schultz, A. J. van Vught, G. Molema, and C. J. Heijnen. Angiopoietin-1 treatment reduces inflammation but does not prevent ventilator-induced lung injury. PLoS ONE 5(12):e15653, 2010.CrossRefGoogle Scholar
  35. 35.
    Heise, R. L., V. Stober, C. Cheluvaraju, J. W. Hollingsworth, and S. Garantziotis. Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. J. Biol. Chem. 286:17435–17444, 2011.CrossRefGoogle Scholar
  36. 36.
    Helmerhorst, H. J. F., L. R. A. Schouten, G. T. M. Wagenaar, N. P. Juffermans, J. J. T. H. Roelofs, M. J. Schultz, E. de Jonge, and D. J. van Westerloo. Hyperoxia provokes a time- and dose-dependent inflammatory response in mechanically ventilated mice, irrespective of tidal volumes. Intensive Care Med. Exp. 5:27, 2017.CrossRefGoogle Scholar
  37. 37.
    Herbert, J. A., M. S. Valentine, N. Saravanan, M. B. Schneck, R. Pidaparti, A. A. Fowler, A. M. Reynolds, and R. L. Heise. Conservative fluid management prevents age-associated ventilator induced mortality. Exp. Gerontol. 81:101–109, 2016.CrossRefGoogle Scholar
  38. 38.
    Hibi, M., M. Murakami, M. Saito, T. Hirano, T. Taga, and T. Kishimoto. Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63:1149–1157, 1990.CrossRefGoogle Scholar
  39. 39.
    Irving, S. G., P. F. Zipfel, J. Balke, O. W. McBride, C. C. Morton, P. R. Burd, U. Siebenlist, and K. Kelly. Two inflammatory mediator cytokine genes are closely linked and variably amplified on chromosome 17q. Nucleic Acids Res. 18:3261–3270, 1990.CrossRefGoogle Scholar
  40. 40.
    Jia, C.-E., D. Jiang, H. Dai, F. Xiao, and C. Wang. Pendrin, an anion exchanger on lung epithelial cells, could be a novel target for lipopolysaccharide-induced acute lung injury mice. Am. J. Transl. Res. 8:981, 2016.Google Scholar
  41. 41.
    Kim, H. J., J. S. Jeong, S. R. Kim, S. Y. Park, H. J. Chae, and Y. C. Lee. Inhibition of endoplasmic reticulum stress alleviates lipopolysaccharide-induced lung inflammation through modulation of NF-κB/HIF-1α signaling pathway. Sci. Rep. 3:1142, 2013.CrossRefGoogle Scholar
  42. 42.
    Kolb, P. S., E. A. Ayaub, W. Zhou, V. Yum, J. G. Dickhout, and K. Ask. The therapeutic effects of 4-phenylbutyric acid in maintaining proteostasis. Int. J. Biochem. Cell Biol. 61:45–52, 2015.CrossRefGoogle Scholar
  43. 43.
    Korfei, M., C. Ruppert, P. Mahavadi, I. Henneke, P. Markart, M. Koch, G. Lang, L. Fink, R.-M. Bohle, W. Seeger, T. E. Weaver, and A. Guenther. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 178:838–846, 2008.CrossRefGoogle Scholar
  44. 44.
    Lee, A. S. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35:373–381, 2005.CrossRefGoogle Scholar
  45. 45.
    Levy, B. D., and A. M. K. Choi. Acute respiratory distress syndrome|clinical gate. Clincalgate 2015. http://clinicalgate.com/acute-respiratory-distress-syndrome-2/ [17 Apr. 2016]
  46. 46.
    Lloyd, C. Chemokines in allergic lung inflammation. Immunology 105:144, 2002.CrossRefGoogle Scholar
  47. 47.
    Luh, S., and C. Chiang. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS): the mechanism, present strategies and future perspectives of therapies. J. Zhejiang. Univ. Sci. B 8:60–69, 2007.CrossRefGoogle Scholar
  48. 48.
    Maus, U., J. Huwe, R. Maus, W. Seeger, and J. Lohmeyer. Alveolar JE/MCP-1 and endotoxin synergize to provoke lung cytokine upregulation, sequential neutrophil and monocyte influx, and vascular leakage in mice. Am. J. Respir. Crit. Care Med. 164:406–411, 2001.CrossRefGoogle Scholar
  49. 49.
    Moldoveanu, B., P. Otmishi, P. Jani, J. Walker, X. Sarmiento, J. Guardiola, M. Saad, and J. Yu. Inflammatory mechanisms in the lung. J. Inflamm. Res. 2:1, 2009.Google Scholar
  50. 50.
    Mukai, S., Y. Ogawa, F. Urano, C. Kudo-Saito, Y. Kawakami, and K. Tsubota. Novel treatment of chronic graft-versus-host disease in mice using the ER stress reducer 4-phenylbutyric acid. Sci. Rep. 7:41939, 2017.CrossRefGoogle Scholar
  51. 51.
    Müller, H. C., K. Hellwig, S. Rosseau, T. Tschernig, A. Schmiedl, B. Gutbier, B. Schmeck, S. Hippenstiel, H. Peters, L. Morawietz, N. Suttorp, and M. Witzenrath. Simvastatin attenuates ventilator-induced lung injury in mice. Crit. Care 14:R143, 2010.CrossRefGoogle Scholar
  52. 52.
    Murray, M. Y., T. P. Birkland, J. D. Howe, A. D. Rowan, M. Fidock, W. C. Parks, and J. Gavrilovic. Macrophage migration and invasion is regulated by MMP10 expression. PLoS ONE 8:e63555, 2013.CrossRefGoogle Scholar
  53. 53.
    Naidoo, N. ER and aging—protein folding and the ER stress response. Ageing Res. Rev. 8:150–159, 2009.CrossRefGoogle Scholar
  54. 54.
    Network TARDS. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342:1301–1308, 2000.CrossRefGoogle Scholar
  55. 55.
    Nin, N., J. A. Lorente, M. Paula, P. Fernández-Segoviano, O. Peñuelas, A. Sánchez-Ferrer, L. Martínez-Caro, and A. Esteban. Aging increases the susceptibility to injurious mechanical ventilation. Intensiv Care Med. 34:923–931, 2008.CrossRefGoogle Scholar
  56. 56.
    O’Dea, K. P., M. R. Wilson, J. O. Dokpesi, K. Wakabayashi, L. Tatton, N. van Rooijen, and M. Takata. Mobilization and Margination of Bone Marrow Gr-1high Monocytes during sub-clinical endotoxemia predisposes the lungs towards acute injury. J. Immunol. 1950(182):1155–1166, 2009.CrossRefGoogle Scholar
  57. 57.
    O’Dea, K. P., A. J. Young, H. Yamamoto, J. L. Robotham, F. M. Brennan, and M. Takata. Lung-marginated monocytes modulate pulmonary microvascular injury during early endotoxemia. Am. J. Respir. Crit. Care Med. 172:1119–1127, 2005.CrossRefGoogle Scholar
  58. 58.
    Okada, M., A. Matsumori, K. Ono, Y. Furukawa, T. Shioi, A. Iwasaki, K. Matsushima, and S. Sasayama. Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18:894–901, 1998.CrossRefGoogle Scholar
  59. 59.
    Oslowski, C. M., and F. Urano. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 490:71–92, 2011.CrossRefGoogle Scholar
  60. 60.
    Puchta, A., A. Naidoo, C. P. Verschoor, D. Loukov, N. Thevaranjan, T. S. Mandur, P. Nguyen, M. Jordana, M. Loeb, Z. Xing, L. Kobzik, M. J. Larché, and D. M. E. Bowdish. TNF drives monocyte dysfunction with age and results in impaired anti-pneumococcal immunity. PLoS Pathog. 12:e1005368, 2016.CrossRefGoogle Scholar
  61. 61.
    Rentzsch, I., C. L. Santos, R. Huhle, J. M. C. Ferreira, T. Koch, C. Schnabel, E. Koch, P. Pelosi, P. R. M. Rocco, and M. G. de Abreu. Variable stretch reduces the pro-inflammatory response of alveolar epithelial cells. PLoS ONE 12:e0182369, 2017.CrossRefGoogle Scholar
  62. 62.
    Ruthman, C. A., and E. Festic. Emerging therapies for the prevention of acute respiratory distress syndrome. Ther. Adv. Respir. Dis. 9:173–187, 2015.CrossRefGoogle Scholar
  63. 63.
    Schouten, L. R. A., M. J. Schultz, A. H. van Kaam, N. P. Juffermans, A. P. Bos, and R. M. Wösten-van Asperen. Association between maturation and aging and pulmonary responses in animal models of lung injury: a systematic review. Anesthesiology 123:389–408, 2015.CrossRefGoogle Scholar
  64. 64.
    Shallo, H., T. P. Plackett, S. A. Heinrich, and E. J. Kovacs. Monocyte chemoattractant protein-1 (MCP-1) and macrophage infiltration into the skin after burn injury in aged mice. Burns 29:641–647, 2003.CrossRefGoogle Scholar
  65. 65.
    Shao, L., D. Meng, F. Yang, H. Song, and D. Tang. Irisin-mediated protective effect on LPS-induced acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells. Biochem. Biophys. Res. Commun. 487:194–200, 2017.CrossRefGoogle Scholar
  66. 66.
    Shi, C., and E. G. Pamer. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11(11):762, 2011.CrossRefGoogle Scholar
  67. 67.
    Skerrett, S. J., H. D. Liggitt, A. M. Hajjar, R. K. Ernst, S. I. Miller, and C. B. Wilson. Respiratory epithelial cells regulate lung inflammation in response to inhaled endotoxin. Am. J. Physiol. Lung Cell. Mol. Physiol. 287:L143–L152, 2004.CrossRefGoogle Scholar
  68. 68.
    Terragni, P. P., G. Rosboch, A. Tealdi, E. Corno, E. Menaldo, O. Davini, G. Gandini, P. Herrmann, L. Mascia, M. Quintel, A. S. Slutsky, L. Gattinoni, and V. M. Ranieri. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 175(2):160–166, 2012.  https://doi.org/10.1164/rccm.200607-915oc.CrossRefGoogle Scholar
  69. 69.
    Tremblay, L. N., D. Miatto, Q. Hamid, A. Govindarajan, and A. S. Slutsky. Injurious ventilation induces widespread pulmonary epithelial expression of tumor necrosis factor-alpha and interleukin-6 messenger RNA. Crit. Care Med. 30:1693–1700, 2002.CrossRefGoogle Scholar
  70. 70.
    Trouplin, V., N. Boucherit, L. Gorvel, F. Conti, G. Mottola, and E. Ghigo. Bone marrow-derived macrophage production. J. Vis. Exp. JoVE 2013Google Scholar
  71. 71.
    van Zoelen, M. A. D., M. I. Verstege, C. Draing, R. deBeer, C. van’t Veer, S. Florquin, P. Bresser, J. S. van der Zee, A. A. te Velde, S. von Aulock, and T. van der Poll. Endogenous MCP-1 promotes lung inflammation induced by LPS and LTA. Mol. Immunol. 48:1468–1476, 2011.CrossRefGoogle Scholar
  72. 72.
    Vlahakis, N. E., M. A. Schroeder, A. H. Limper, and R. D. Hubmayr. Stretch induces cytokine release by alveolar epithelial cells in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 277:L167–L173, 1999.CrossRefGoogle Scholar
  73. 73.
    Wang, J. M., B. Sherry, M. J. Fivash, D. J. Kelvin, and J. J. Oppenheim. Human recombinant macrophage inflammatory protein-1 alpha and -beta and monocyte chemotactic and activating factor utilize common and unique receptors on human monocytes. J. Immunol. 150:3022–3029, 1993.Google Scholar
  74. 74.
    Wilson, M. R., K. P. O’Dea, D. Zhang, A. D. Shearman, N. van Rooijen, and M. Takata. Role of lung-marginated monocytes in an in vivo mouse model of ventilator-induced lung injury. Am. J. Respir. Crit. Care Med. 179:914–922, 2009.CrossRefGoogle Scholar
  75. 75.
    Wolters, P. J., C. Wray, R. E. Sutherland, S. S. Kim, J. Koff, Y. Mao, and J. A. Frank. Neutrophil-derived il-6 limits alveolar barrier disruption in experimental ventilator-induced lung injury. J Immunol 1950(182):8056–8062, 2009.CrossRefGoogle Scholar
  76. 76.
    Wung, B. S., J. J. Cheng, Y. J. Chao, J. Lin, Y. J. Shyy, and D. L. Wang. Cyclical strain increases monocyte chemotactic protein-1 secretion in human endothelial cells. Am. J. Physiol.-Heart. Circ. Physiol. 270:H1462–H1468, 1996.CrossRefGoogle Scholar
  77. 77.
    Xia, S., X. Zhang, S. Zheng, R. Khanabdali, B. Kalionis, J. Wu, W. Wan, and X. Tai. An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment. J Immunol Res 2016Google Scholar
  78. 78.
    Xiao, C., A. Giacca, and G. F. Lewis. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and β-cell dysfunction in humans. Diabetes 60:918, 2011.CrossRefGoogle Scholar
  79. 79.
    Yin, L., D. Zheng, G. V. Limmon, N. H. Leung, S. Xu, J. C. Rajapakse, H. Yu, V. T. Chow, and J. Chen. Aging exacerbates damage and delays repair of alveolar epithelia following influenza viral pneumonia. Respir. Res. 15(1):116, 2014.CrossRefGoogle Scholar
  80. 80.
    Yuan, R., L. L. Peters, and B. Paigen. Mice as a mammalian model for research on the genetics of aging. ILAR J. Natl. Res. Counc. Inst. Lab. Anim. Resour. 52:4–15, 2011.CrossRefGoogle Scholar
  81. 81.
    Zhong, Q., B. Zhou, D. K. Ann, P. Minoo, Y. Liu, A. Banfalvi, M. S. Krishnaveni, M. Dubourd, L. Demaio, B. C. Willis, K.-J. Kim, R. M. duBois, E. D. Crandall, M. F. Beers, and Z. Borok. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am. J. Respir. Cell Mol. Biol. 45:498, 2011.CrossRefGoogle Scholar
  82. 82.
    Zhu, J.-P., K. Wu, J.-Y. Li, Y. Guan, Y.-H. Sun, W.-J. Ma, and Q.-M. Xie. Cryptoporus volvatus polysaccharides attenuate LPS-induced expression of pro-inflammatory factors via the TLR2 signaling pathway in human alveolar epithelial cells. Pharm. Biol. 54(2):347–353, 2016.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Mathematics and Applied MathematicsVirginia Commonwealth UniversityRichmondUSA
  3. 3.Victoria Johnson Center for Lung Disease ResearchVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations