Cellular and Molecular Bioengineering

, Volume 12, Issue 2, pp 139–152 | Cite as

The TRPV4-TAZ Mechanotransduction Signaling Axis in Matrix Stiffness- and TGFβ1-Induced Epithelial-Mesenchymal Transition

  • Shweta Sharma
  • Rishov Goswami
  • Shaik O. RahamanEmail author



The implantation of biomaterials into soft tissue leads to the development of foreign body response, a non-specific inflammatory condition that is characterized by the presence of fibrotic tissue. Epithelial–mesenchymal transition (EMT) is a key event in development, fibrosis, and oncogenesis. Emerging data support a role for both a mechanical signal and a biochemical signal in EMT. We hypothesized that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is a mediator of EMT.


Normal human primary epidermal keratinocytes (NHEKs) were seeded on collagen-coated plastic plates or varied stiffness polyacrylamide gels in the presence or absence of TGFβ1. Immunofluorescence, immunoblot, and polymerase chain reaction analysis were performed to determine expression level of EMT markers and signaling proteins. Knock-down of TRPV4 function was achieved by siRNA transfection or by GSK2193874 treatment.


We found that knock-down of TRPV4 blocked both matrix stiffness- and TGFβ1-induced EMT in NHEKs. In a murine skin fibrosis model, TRPV4 deletion resulted in decreased expression of the mesenchymal marker, α-SMA, and increased expression of epithelial marker, E-cadherin. Mechanistically, our data showed that: (i) TRPV4 was essential for the nuclear translocation of TAZ in response to matrix stiffness and TGFβ1; (ii) Antagonism of TRPV4 inhibited both matrix stiffness-induced and TGFβ1-induced expression of TAZ proteins; and (iii) TRPV4 antagonism suppressed both matrix stiffness-induced and TGFβ1-induced activation of Smad2/3, but not of AKT.


These data identify a novel role for TRPV4-TAZ mechanotransduction signaling axis in regulating EMT in NHEKs in response to both matrix stiffness and TGFβ1.


TRPV4 Epithelial–mesenchymal transition Keratinocytes Matrix stiffness TAZ Smad2/3 Fibrosis 



Startup grant from University of Maryland, NIH (1R01EB024556-01), and NSF (CMMI-1662776) grants to Shaik O. Rahaman.


SS and SOR conceived the study, designed and performed the experiments, and wrote the manuscript. RG assisted with experiments and analysis of data, and maintained the animal colony. All authors reviewed the results and approved the final content of the manuscript.

Conflict of interest

Shweta Sharma, Rishov Goswami, and Shaik O. Rahaman declare that they have no conflicts of interest.


The study protocol was approved by the University of Maryland Review Committee, and all experiments were performed in accordance with the IACUC guidelines.


This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

12195_2018_565_MOESM1_ESM.pdf (3 mb)
Supplementary Fig. 1 TRPV4 antagonism suppresses Ca2+ influx and modulates expression of matrix stiffness and TGFβ1-induced ECAD and α-SMA. (A) FlexStation 3 recording of Calcium 6 dye-loaded NHEK monolayers assessing effects of TRPV4 selective antagonist, GSK219, on Ca2+ influx induced by calcium ionophore, A23 (2 μM) or TRPV4 selective agonist, GSK101 (20 nM). Bar graph is showing the quantified results (mean ± SEM). All experiments were performed 3 times in quadruplicate. **p < 0.01; 1-way ANOVA. (B and C) NHEKs were plated on collagen-coated (10 μg/mL) plastic plates and were incubated with or without GSK219 for 24 h. qRT-PCR analysis was performed to determine ECAD, GAPDH, and Vimentin mRNA levels using SYBR Green gene Expression Assay. Ct values were normalized to GAPDH levels. **p < 0.01; 1-way ANOVA. (D) NHEKs were plated on soft (1 kPa) or stiff (25 kPa) polyacrylamide hydrogels coated with collagen (10 μg/mL), and were incubated with or without TGFβ1 (5 ng/mL) for 96 h. For this experiment, we refreshed the media with GSK219 (5 nM) every 24 h. The data shown is one of the representative images from four different fields per condition to assess the capacity of TRPV4 inhibition (by GSK219) to inhibit matrix stiffness and TGFβ1-induced increases in the expression of ECAD and α-SMA. ECAD (red), α-SMA (green), and DAPI (blue) stains are shown. Scale bars: 10 µm. (E) Quantitation of results shown in D. Data are expressed as mean ± SEM of three independent experiments, n = 20 cells/condition. ns = non-significant; **p < 0.01, ***p < 0.001; 1-way ANOVA. hpf: high power field. (PDF 3096 kb)
12195_2018_565_MOESM2_ESM.pdf (6.6 mb)
Supplementary Fig. 2 TRPV4 inhibition by siRNA modulates expression of matrix stiffness and TGFβ1-induced ECAD and α-SMA. (A) NHEKs were plated on soft (1 kPa) or stiff (25 kPa) collagen-coated (10 μg/mL) polyacrylamide hydrogels, and were transfected with scrambled siRNA (Scr) or TRPV4 specific siRNA (si-TRPV4) for 96 h. ECAD (red), α-SMA (green), and DAPI (blue) stains are shown. Scale bars: 10 µm. (B) Quantitation of results shown in A. Data are expressed as mean ± SEM of three independent experiments, n = 20 cells/condition. ns = non-significant; *p < 0.05, **p < 0.01, ***p < 0.001; 1-way ANOVA. hpf: high power field. (PDF 6799 kb)


  1. 1.
    Adapala, R. K., R. J. Thoppil, D. J. Luther, et al. TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J. Mol. Cell. Cardiol. 54:45–52, 2013.CrossRefGoogle Scholar
  2. 2.
    Aragona, M., T. Panciera, A. Manfrin, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059, 2013.CrossRefGoogle Scholar
  3. 3.
    Azimi, I., H. Beilby, F. M. Davis, et al. Altered purinergic receptor-Ca2+ signaling associated with hypoxia-induced epithelial–mesenchymal transition in breast cancer cells. Mol. Oncol. 10:166–178, 2016.CrossRefGoogle Scholar
  4. 4.
    Bakin, A. V., A. K. Tomlinson, N. A. Bhowmick, et al. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275:36803–36810, 2000.CrossRefGoogle Scholar
  5. 5.
    Barker, T. H., M. M. Dysart, A. C. Brown, et al. Synergistic effects of particulate matter and substrate stiffness on epithelial-to-mesenchymal transition. Res. Rep. Health Eff. Inst. 182:3–41, 2014.Google Scholar
  6. 6.
    Berridge, M. J., M. D. Bootman, and H. L. Roderick. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4:517–529, 2003.CrossRefGoogle Scholar
  7. 7.
    Bordeleau, F., B. N. Mason, E. M. Lollis, et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc. Natl. Acad. Sci. U.S.A. 114:492–497, 2017.CrossRefGoogle Scholar
  8. 8.
    Brown, A. C., V. F. Fiore, T. A. Sulchek, et al. Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis-associated epithelial-to-mesenchymal transitions. J. Pathol. 229:25–35, 2013.CrossRefGoogle Scholar
  9. 9.
    Chaudhuri, O., S. T. Koshy, C. Branco da Cunha, et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13:970–978, 2014.CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Q. Fang, Z. Wang, et al. Transient receptor potential vanilloid 4 ion channel functions as a pruriceptor in epidermal keratinocytes to evoke histaminergic itch. J. Biol. Chem. 291:10252–10262, 2016.CrossRefGoogle Scholar
  11. 11.
    Chen, X. F., H. J. Zhang, H. B. Wang, et al. Transforming growth factor-β1 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3 K/Akt and MEK/Erk1/2 signaling pathways. Mol. Biol. Rep. 39:3549–3556, 2012.CrossRefGoogle Scholar
  12. 12.
    Choi, J., S. Y. Park, and C. K. Joo. Transforming growth factor-beta1 represses E-cadherin production via slug expression in lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 48:2708–2718, 2007.CrossRefGoogle Scholar
  13. 13.
    Davis, F. M., I. Azimi, R. A. Faville, et al. Induction of epithelial–mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene 33:2307–2316, 2014.CrossRefGoogle Scholar
  14. 14.
    Degryse, A. L., H. Tanjore, X. C. Xu, et al. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment. Am. J. Physiol. Lung Cell. Mol. Physiol. 300:L887–897, 2011.CrossRefGoogle Scholar
  15. 15.
    Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.CrossRefGoogle Scholar
  16. 16.
    Dupont, S., L. Morsut, M. Aragona, et al. Role of YAP/TAZ in mechanotransduction. Nature 474:179–183, 2011.CrossRefGoogle Scholar
  17. 17.
    Everaerts, W., B. Nilius, and G. Owsianik. The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog. Biophys. Mol. Biol. 103:2–17, 2010.CrossRefGoogle Scholar
  18. 18.
    Everaerts, W., X. Zhen, D. Ghosh, et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl. Acad. Sci. U.S.A. 107:19084–19089, 2010.CrossRefGoogle Scholar
  19. 19.
    Fukawa, T., H. Kajiya, S. Ozeki, et al. Reactive oxygen species stimulates epithelial mesenchymal transition in normal human epidermal keratinocytes via TGF-beta secretion. Exp. Cell Res. 318:1926–1932, 2012.CrossRefGoogle Scholar
  20. 20.
    Garcia-Elias, A., S. Mrkonjić, C. Jung, et al. The TRPV4 channel. Handb. Exp. Pharmacol. 222:293–319, 2014.CrossRefGoogle Scholar
  21. 21.
    Georges, P. C., J. J. Hui, Z. Gombos, et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293:G1147–1154, 2007.CrossRefGoogle Scholar
  22. 22.
    Goswami, R., J. Cohen, S. Sharma, et al. TRPV4 ion channel is associated with scleroderma. J. Invest. Dermatol. 137:962–965, 2017.CrossRefGoogle Scholar
  23. 23.
    Guan, R., X. Wang, X. Zhao, et al. Emodin ameliorates bleomycin-induced pulmonary fibrosis in rats by suppressing epithelial–mesenchymal transition and fibroblast activation. Sci. Rep. 6:35696, 2016.CrossRefGoogle Scholar
  24. 24.
    Hackett, T. L., S. M. Warner, D. Stefanowicz, et al. Induction of epithelial–mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1. Am. J. Respir. Crit. Care Med. 180:122–133, 2009.CrossRefGoogle Scholar
  25. 25.
    Hdud, I. M., A. Mobasheri, and P. T. Loughna. Effect of osmotic stress on the expression of TRPV4 and BKCa channels and possible interaction with ERK1/2 and p38 in cultured equine chondrocytes. Am. J. Physiol. Cell Physiol. 306:C1050–1057, 2014.CrossRefGoogle Scholar
  26. 26.
    Huang, C., S. Akaishi, and R. Ogawa. Mechanosignaling pathways in cutaneous scarring. Arch. Dermatol. Res. 304:589–597, 2012.CrossRefGoogle Scholar
  27. 27.
    Humphrey, J. D., E. R. Dufresne, and M. A. Schwartz. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15:802–812, 2014.CrossRefGoogle Scholar
  28. 28.
    Iamshanova, O., A. FiorioPla, and N. Prevarskaya. Molecular mechanisms of tumour invasion: regulation by calcium signals. J. Physiol. 595:3063–3075, 2017.CrossRefGoogle Scholar
  29. 29.
    Janssen, L. J., S. Mukherjee, and K. Ask. Calcium homeostasis and ionic mechanisms in pulmonary fibroblasts. Am. J. Respir. Cell Mol. Biol. 53:135–148, 2015.CrossRefGoogle Scholar
  30. 30.
    Kida, N., T. Sokabe, M. Kashio, et al. Importance of transient receptor potential vanilloid 4 (TRPV4) in epidermal barrier function in human skin keratinocytes. Pflugers Arch. 463:715–725, 2012.CrossRefGoogle Scholar
  31. 31.
    Kolosova, I., D. Nethery, and J. A. Kern. Role of Smad2/3 and p38 MAP kinase in TGF-β1-induced epithelial–mesenchymal transition of pulmonary epithelial cells. J. Cell. Physiol. 226:1248–1254, 2011.CrossRefGoogle Scholar
  32. 32.
    Krainock, M., O. Toubat, S. Danopoulos, et al. Epicardial epithelial-to-mesenchymal transition in heart development and disease. J. Clin. Med. 5(2):7, 2016.CrossRefGoogle Scholar
  33. 33.
    Kumar, S. Cellular mechanotransduction: stiffness does matter. Nat. Mater. 13:918–920, 2014.CrossRefGoogle Scholar
  34. 34.
    Lai, W., L. Liu, Y. Zeng, et al. KCNN4 channels participate in the EMT induced by PRL-3 in colorectal cancer. Med. Oncol. 30:566, 2013.CrossRefGoogle Scholar
  35. 35.
    Lamouille, S., J. Xu, and R. Derynck. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15:178–196, 2014.CrossRefGoogle Scholar
  36. 36.
    Lei, Q. Y., H. Zhang, B. Zhao, et al. TAZ promotes cell proliferation and epithelial–mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell. Biol. 28:2426–2436, 2008.CrossRefGoogle Scholar
  37. 37.
    Leight, J. L., M. A. Wozniak, S. Chen, et al. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial–mesenchymal transition. Mol. Biol. Cell 23:781–791, 2012.CrossRefGoogle Scholar
  38. 38.
    Li, Z., Y. Wang, Y. Zhu, et al. The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer. Mol. Oncol. 9:1091–1105, 2015.CrossRefGoogle Scholar
  39. 39.
    Liu, F., D. Lagares, K. M. Choi, et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308:L344–L357, 2015.CrossRefGoogle Scholar
  40. 40.
    Mai, X., J. Shang, S. Liang, et al. Blockade of Orai1 store-operated calcium entry protects against renal fibrosis. J. Am. Soc. Nephrol. 27:3063–3078, 2016.CrossRefGoogle Scholar
  41. 41.
    Masszi, A., L. Fan, L. Rosivall, et al. Integrity of cell-cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. Am. J. Pathol. 165:1955–1967, 2004.CrossRefGoogle Scholar
  42. 42.
    Mauviel, A., F. Nallet-Staub, and X. Varelas. Integrating developmental signals: a Hippo in the (path)way. Oncogene 31:1743–1756, 2012.CrossRefGoogle Scholar
  43. 43.
    Mendez, M. G., and P. A. Janmey. Transcription factor regulation by mechanical stress. Int. J. Biochem. Cell Biol. 44:728–732, 2012.CrossRefGoogle Scholar
  44. 44.
    Miranda, M. Z., J. F. Bialik, P. Speight, et al. TGF-β1 regulates the expression and transcriptional activity of TAZ via a Smad3-independent, myocardin-related transcription factor-mediated mechanism. J. Biol. Chem. 2017. Scholar
  45. 45.
    Moore, C., F. Cevikbas, H. A. Pasolli, et al. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc. Natl. Acad. Sci. U.S.A. 110:E3225–3234, 2013.CrossRefGoogle Scholar
  46. 46.
    Nasrollahi, S., and A. Pathak. Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices. Sci. Rep. 6:18831, 2016.CrossRefGoogle Scholar
  47. 47.
    Nawshad, A., D. Lagamba, A. Polad, et al. Transforming growth factor-beta signaling during epithelial–mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs 179:11–23, 2005.CrossRefGoogle Scholar
  48. 48.
    Nayak, P. S., Y. Wang, T. Najrana, et al. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells. Respir. Res. 16:60, 2015.CrossRefGoogle Scholar
  49. 49.
    Nieves-Cintrón, M., G. C. Amberg, M. F. Navedo, et al. The control of Ca2+ influx and NFATc3 signaling in arterial smooth muscle during hypertension. Proc. Natl. Acad. Sci. U.S.A. 105:15623–15628, 2008.CrossRefGoogle Scholar
  50. 50.
    Nikitorowicz-Buniak, J., C. P. Denton, D. Abraham, et al. Partially evoked epithelial-mesenchymal transition (EMT) is associated with increased TGFβ signaling within lesional scleroderma skin. PLoS ONE 10:e0134092, 2015.CrossRefGoogle Scholar
  51. 51.
    Noguchi, S., A. Saito, Y. Mikami, et al. TAZ contributes to pulmonary fibrosis by activating profibrotic functions of lung fibroblasts. Sci. Rep. 7:42595, 2017.CrossRefGoogle Scholar
  52. 52.
    Nowrin, K., S. S. Sohal, G. Peterson, et al. Epithelial–mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer. Expert Rev. Respir. Med. 8:547–559, 2014.CrossRefGoogle Scholar
  53. 53.
    O’Connor, J. W., P. N. Riley, S. M. Nalluri, et al. Matrix rigidity mediates TGFβ1-induced epithelial-myofibroblast transition by controlling cytoskeletal organization and MRTF-A localization. J. Cell. Physiol. 230:1829–1839, 2015.CrossRefGoogle Scholar
  54. 54.
    O’Kane, D., M. V. Jackson, A. Kissenpfennig, et al. SMAD inhibition attenuates epithelial to mesenchymal transition by primary keratinocytes in vitro. Exp. Dermatol. 23:497–503, 2014.CrossRefGoogle Scholar
  55. 55.
    Paszek, M. J., N. Zahir, K. R. Johnson, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.CrossRefGoogle Scholar
  56. 56.
    Peinado, H., M. Quintanilla, and A. Cano. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 278:21113–21123, 2003.CrossRefGoogle Scholar
  57. 57.
    Piersma, B., R. A. Bank, and M. Boersema. Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front. Med. (Lausanne) 2:59, 2015.Google Scholar
  58. 58.
    Plant, T. D., and R. Strotmann. TRPV4. Handb. Exp. Pharmacol. 179:189–205, 2007.CrossRefGoogle Scholar
  59. 59.
    Polimeni, M., G. R. Gulino, E. Gazzano, et al. Multi-walled carbon nanotubes directly induce epithelial–mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway. Part. Fibre Toxicol. 13:27, 2016.CrossRefGoogle Scholar
  60. 60.
    Rahaman, S. O., L. M. Grove, S. Paruchuri, et al. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J. Clin. Invest. 124:5225–5238, 2014.CrossRefGoogle Scholar
  61. 61.
    Rice, A. J., E. Cortes, D. Lachowski, et al. Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6:e352, 2017.CrossRefGoogle Scholar
  62. 62.
    Roderick, H. L., and S. J. Cook. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 8:361–375, 2008.CrossRefGoogle Scholar
  63. 63.
    Saito, A., and T. Nagase. Hippo and TGF-β interplay in the lung field. Am. J. Physiol. Lung Cell. Mol. Physiol. 309:L756–L767, 2015.Google Scholar
  64. 64.
    Santana, A., B. Saxena, N. A. Noble, et al. Increased expression of transforming growth factor beta isoforms (beta 1, beta 2, beta 3) in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 13:34–44, 1995.CrossRefGoogle Scholar
  65. 65.
    Sharma, S., R. Goswami, M. Merth, et al. TRPV4 ion channel is a novel regulator of dermal myofibroblast differentiation. Am. J. Physiol. Cell Physiol. 312:C562–C572, 2017.CrossRefGoogle Scholar
  66. 66.
    Sokabe, T., and M. Tominaga. The TRPV4 cation channel: a molecule linking skin temperature and barrier function. Commun Integr Biol 3:619–621, 2010.CrossRefGoogle Scholar
  67. 67.
    Speight, P., H. Nakano, T. J. Kelley, et al. Differential topical susceptibility to TGFβ in intact and injured regions of the epithelium: key role in myofibroblast transition. Mol. Biol. Cell 24:3326–3336, 2013.CrossRefGoogle Scholar
  68. 68.
    Stone, R. C., I. Pastar, N. Ojeh, et al. Epithelial–mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 365:495–506, 2016.CrossRefGoogle Scholar
  69. 69.
    Sulk, M., S. Seeliger, J. Aubert, et al. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea. J. Invest. Dermatol. 132:1253–1262, 2012.CrossRefGoogle Scholar
  70. 70.
    Suzuki, M., A. Mizuno, K. Kodaira, et al. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 278:22664–22668, 2003.CrossRefGoogle Scholar
  71. 71.
    Szeto, S. G., M. Narimatsu, M. Lu, et al. YAP/TAZ are mechanoregulators of TGF-β-Smad signaling and renal fibrogenesis. J. Am. Soc. Nephrol. 27:3117–3128, 2016.CrossRefGoogle Scholar
  72. 72.
    Tanjore, H., X. C. Xu, V. V. Polosukhin, et al. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 180:657–665, 2009.CrossRefGoogle Scholar
  73. 73.
    Tennakoon, A. H., T. Izawa, M. Kuwamura, et al. Pathogenesis of type 2 epithelial to mesenchymal transition (EMT) in renal and hepatic fibrosis. J. Clin. Med. 5(1):4, 2015.CrossRefGoogle Scholar
  74. 74.
    Thorneloe, K. S., M. Cheung, W. Bao, et al. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci. Transl. Med. 4:159ra148, 2012.CrossRefGoogle Scholar
  75. 75.
    Trimboli, A. J., K. Fukino, A. de Bruin, et al. Direct evidence for epithelial–mesenchymal transitions in breast cancer. Cancer Res. 68:937–945, 2008.CrossRefGoogle Scholar
  76. 76.
    Tschumperlin, D. J. Fibroblasts and the ground they walk on. Physiology (Bethesda) 28:380–390, 2013.Google Scholar
  77. 77.
    Tschumperlin, D. J., F. Liu, and A. M. Tager. Biomechanical regulation of mesenchymal cell function. Curr. Opin. Rheumatol. 25:92–100, 2013.CrossRefGoogle Scholar
  78. 78.
    Varelas, X., R. Sakuma, P. Samavarchi-Tehrani, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10:837–848, 2008.CrossRefGoogle Scholar
  79. 79.
    Wang, Q., Z. Xu, Q. An, et al. TAZ promotes epithelial to mesenchymal transition via the upregulation of connective tissue growth factor expression in neuroblastoma cells. Mol. Med. Rep. 11:982–988, 2015.CrossRefGoogle Scholar
  80. 80.
    Wei, S. C., L. Fattet, J. H. Tsai, et al. Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17:678–688, 2015.CrossRefGoogle Scholar
  81. 81.
    Wen, L., C. Liang, E. Chen, et al. Regulation of multi-drug resistance in hepatocellular carcinoma cells is TRPC6/calcium dependent. Sci. Rep. 6:23269, 2016.CrossRefGoogle Scholar
  82. 82.
    Wipff, P. J., D. B. Rifkin, J. J. Meister, et al. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179:1311–1323, 2007.CrossRefGoogle Scholar
  83. 83.
    Xu, J., S. Lamouille, and R. Derynck. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19:156–172, 2009.CrossRefGoogle Scholar
  84. 84.
    Yamamoto, T., S. Takagawa, I. Katayama, et al. Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J. Invest. Dermatol. 112:456–462, 1999.CrossRefGoogle Scholar
  85. 85.
    Yang, H. W., S. A. Lee, J. M. Shin, et al. Glucocorticoids ameliorate TGF-β1-mediated epithelial-to-mesenchymal transition of airway epithelium through MAPK and Snail/Slug signaling pathways. Sci. Rep. 7:3486, 2017.CrossRefGoogle Scholar
  86. 86.
    Yang, N., C. D. Morrison, P. Liu, et al. TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin. Cell Cycle 11:2922–2930, 2012.CrossRefGoogle Scholar
  87. 87.
    Yeh, Y. C., W. C. Wei, Y. K. Wang, et al. Transforming growth factor-(beta)1 induces Smad3-dependent (beta)1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am. J. Pathol. 177:1743–1754, 2010.CrossRefGoogle Scholar
  88. 88.
    Yeung, T., P. C. Georges, L. A. Flanagan, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60:24–34, 2005.CrossRefGoogle Scholar
  89. 89.
    Zeisberg, M., and E. G. Neilson. Biomarkers for epithelial–mesenchymal transitions. J. Clin. Invest. 119:1429–1437, 2009.CrossRefGoogle Scholar
  90. 90.
    Zhang, D. X., S. A. Mendoza, A. H. Bubolz, et al. Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension 53:532–538, 2009.CrossRefGoogle Scholar
  91. 91.
    Zhao, X. H., C. Laschinger, P. Arora, et al. Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J. Cell Sci. 120:1801–1809, 2007.CrossRefGoogle Scholar
  92. 92.
    Zhou, C. F., D. C. Zhou, J. X. Zhang, et al. Bleomycin-induced epithelial–mesenchymal transition in sclerotic skin of mice: possible role of oxidative stress in the pathogenesis. Toxicol. Appl. Pharmacol. 277:250–258, 2014.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Shweta Sharma
    • 1
  • Rishov Goswami
    • 1
  • Shaik O. Rahaman
    • 1
    Email author
  1. 1.Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations