Cellular and Molecular Bioengineering

, Volume 11, Issue 1, pp 25–36 | Cite as

Kinesin-5 Mediated Chromosome Congression in Insect Spindles

  • Emily Tubman
  • Yungui He
  • Thomas S. Hays
  • David J. Odde



The microtubule motor protein kinesin-5 is well known to establish the bipolar spindle by outward sliding of antiparallel interpolar microtubules. In yeast, kinesin-5 also facilitates chromosome alignment “congression” at the spindle equator by preferentially depolymerizing long kinetochore microtubules (kMTs). The motor protein kinesin-8 has also been linked to chromosome congression. Therefore, we sought to determine whether kinesin-5 or kinesin-8 facilitates chromosome congression in insect spindles.


RNAi of the kinesin-5 Klp61F and kinesin-8 Klp67A were performed separately in Drosophila melanogaster S2 cells to test for inhibited chromosome congression. Klp61F RNAi, Klp67A RNAi, and control metaphase mitotic spindles expressing fluorescent tubulin and fluorescent Cid were imaged, and their fluorescence distributions were compared.


RNAi of Klp61F with a weak Klp61F knockdown resulted in longer kMTs and less congressed kinetochores compared to control over a range of conditions, consistent with kinesin-5 length-dependent depolymerase activity. RNAi of the kinesin-8 Klp67A revealed that kMTs relative to the spindle lengths were not longer compared to control, but rather that the spindles were longer, indicating that Klp67A acts preferentially as a length-dependent depolymerase on interpolar microtubules without significantly affecting kMT length and chromosome congression.


This study demonstrates that in addition to establishing the bipolar spindle, kinesin-5 regulates kMT length to facilitate chromosome congression in insect spindles. It expands on previous yeast studies, and it expands the role of kinesin-5 to include kMT assembly regulation in eukaryotic mitosis.


Kinesin-5 Microtubules Mitosis 



Kinetochore microtubule


Interpolar microtubule


RNA interference


Double stranded RNA


Nuclear envelope breakdown


Anaphase onset


Polar ejection force



We thank Professor Lawrence Goldstein for providing us with rat-anti-Klp61F antibody. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award No. R01GM071522 and R01GM076177 to D.J.O. and Award RO1GM044757 to T.S.H. E.T. was a recipient of a University of Minnesota Interdisciplinary Doctoral Fellowship through the Institute for Advanced Study.

Author Contributions

E.T. conducted RNAi experiments, collected images, wrote analysis algorithms, ran statistical tests, analyzed and interpreted results, prepared figures, and wrote paper. E.T. and Y.H. designed primers, prepared dsRNA, and ran Western Blot. Y.H. contributed to intellectual ideas. T.H. and D.O., co-principal investigators, oversaw the project and contributed to intellectual ideas.

Conflicts of interest

Emily Tubman, Yungui He, Thomas S. Hays, and David J. Odde declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Supplementary material (3.4 mb)
Supplementary material 1 (MOV 3495 kb) (3.8 mb)
Supplementary material 2 (MOV 3891 kb) (3.2 mb)
Supplementary material 3 (MOV 3321 kb)


  1. 1.
    Ault, J. G., and C. L. Rieder. Centrosome and kinetochore movement during mitosis. Curr. Opin. Cell Biol. 6:41–49, 1994.CrossRefGoogle Scholar
  2. 2.
    Brinkley, B. R., R. P. Zinkowski, W. L. Mollon, F. M. Davis, M. A. Pisegna, M. Pershouse, and P. N. Rao. Movement and segregation of kinetochores experimentally detached from mammalian chromosomes. Nature 336:251–254, 1988.CrossRefGoogle Scholar
  3. 3.
    Brouhard, G. J., and A. J. Hunt. Microtubule movements on the arms of mitotic chromosomes: polar ejection forces quantified in vitro. Proc. Natl. Acad. Sci. USA 102:13903–139038, 2005.CrossRefGoogle Scholar
  4. 4.
    Brust-Mascher, I., G. Civelekoglu-Scholey, M. Kwon, A. Mogilner, and J. M. Scholey. Model for anaphase B: role of three mitotic motors in a switch from poleward flux to spindle elongation. Proc. Natl. Acad. Sci. USA 101:15938–15943, 2004.CrossRefGoogle Scholar
  5. 5.
    Brust-Mascher, I., P. Sommi, D. K. Cheerambathur, and J. M. Scholey. Kinesin-5 – dependent Poleward Flux and Spindle Length Control in Drosophila Embryo Mitosis. Mol. Biol. Cell 20:1749–1762, 2009.CrossRefGoogle Scholar
  6. 6.
    Cassimeris, L., C. L. Rieder, and E. D. Salmon. Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: implications for the mechanism of chromosome congression. J. Cell Sci. 107:285–297, 1994.Google Scholar
  7. 7.
    Chacón, J. M., S. Mukherjee, B. M. Schuster, D. J. Clarke, and M. K. Gardner. Pericentromere tension is self-regulated by spindle structure in metaphase. J. Cell Biol. 205:313–324, 2014.CrossRefGoogle Scholar
  8. 8.
    Chen, Y., and W. O. Hancock. Kinesin-5 is a microtubule polymerase. Nat. Commun. Nature Publishing Group 6:1–10, 2015.Google Scholar
  9. 9.
    Clemens, J.C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci., USA 97:6499–503, 2000.Google Scholar
  10. 10.
    Demchouk, A. O., M. K. Gardner, and D. J. Odde. Microtubule tip tracking and tip structures at the nanometer scale using digital fluorescence microscopy. Cell. Mol. Bioeng. 4:192–204, 2011.CrossRefGoogle Scholar
  11. 11.
    Ferenz, N. P., A. Gable, and P. Wadsworth. Mitotic functions of kinesin-5. Semin. Cell Dev. Biol. Elsevier Ltd 21:255–259, 2010.CrossRefGoogle Scholar
  12. 12.
    Fridman, V., A. Gerson-Gurwitz, O. Shapira, N. Movshovich, S. Lakämper, C. Schmidt, and L. Gheber. Kinesin-5 Kip1 is a bi-directional motor that stabilizes microtubules and tracks their plus-ends in vivo. J. Cell Sci. 126:4147–4159, 2013.CrossRefGoogle Scholar
  13. 13.
    Funabiki, H., and A. W. Murray. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102:411–424, 2000.CrossRefGoogle Scholar
  14. 14.
    Gardner, M. K., C. G. Pearson, B. L. Sprague, T. R. Zarzar, K. Bloom, E. D. Salmon, and D. J. Odde. Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Mol. Biol. Cell 16:3764–3775, 2005.CrossRefGoogle Scholar
  15. 15.
    Gardner, M.K., D.C. Bouck, L.V. Paliulis, J.B. Meehl, E.T. O’Toole, J. Haase, A. Soubry, A.P. Joglekar, M. Windey, E.D. Salmon, K. Bloom, and D. J. Odde. Chromosome congression by kinesin-5 motor-mediated disassembly of longer kinetochore microtubules. Cell 135:894–906, 2008.Google Scholar
  16. 16.
    Gerson-Gurwitz, A., C. Thiede, N. Movshovich, V. Fridman, M. Podolskaya, T. Danieli, S. Lakämper, D. R. Klopfenstein, C. F. Schmidt, and L. Gheber. Directionality of individual kinesin-5 Cin8 motors is modulated by loop 8, ionic strength and microtubule geometry. EMBO J. 30:4942–4954, 2011.CrossRefGoogle Scholar
  17. 17.
    Goodwin, S. S., and R. D. Vale. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143:263–274, 2010.CrossRefGoogle Scholar
  18. 18.
    Goshima, G., et al. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316:417–421, 2007.CrossRefGoogle Scholar
  19. 19.
    Goshima, G., and R. D. Vale. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 162:1003–1016, 2003.CrossRefGoogle Scholar
  20. 20.
    Goshima, G., R. Wollman, N. Stuurman, J. M. Scholey, and R. D. Vale. Length control of the metaphase spindle. Curr. Biol. 15:1979–1988, 2005.CrossRefGoogle Scholar
  21. 21.
    Heck, M., A. Pereira, P. Pesavento, Y. Yannoni, A. C. Spradling, and L. S. Goldstein. The kinesin-like protein KLP61F is essential for mitosis in Drosophila. J. Cell Biol. 123:665–679, 1993.CrossRefGoogle Scholar
  22. 22.
    Henikoff, S., K. Ahmad, J.S. Platero, and B. van Steensel. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci., USA 97:716–721, 2000.Google Scholar
  23. 23.
    Hoyt, M. A., L. He, K. K. Loo, and W. S. Saunders. Kinesin-related gene products required for mitotic spindle assembly. J. Cell Biol. 118:109–120, 1992.CrossRefGoogle Scholar
  24. 24.
    Inoué, S., and E. D. Salmon. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6:1619–1640, 1995.CrossRefGoogle Scholar
  25. 25.
    Ke, K., J. Cheng, and A. J. Hunt. The distribution of polar ejection forces determines the amplitude of chromosome directional instability. Curr. Biol. Elsevier Ltd 19:807–815, 2009.CrossRefGoogle Scholar
  26. 26.
    Levesque, A. A., and D. A. Compton. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell. Biol. 154:1135–1146, 2001.CrossRefGoogle Scholar
  27. 27.
    Maiato, H., P. J. Hergert, S. Moutinho-Periera, Y. Dong, K. J. Vandenbeldt, C. L. Rieder, and B. F. McEwen. The ultrastructure of the kinetochore and kinetochore fiber in Drosophila somatic cells. Chromosoma 115:469–480, 2006.CrossRefGoogle Scholar
  28. 28.
    Maiato, H., C. E. Sunkel, and W. C. Earnshaw. Dissecting mitosis by RNAi in Drosophila tissue culture cells. Biol. Proced. Online 5:153–161, 2003.CrossRefGoogle Scholar
  29. 29.
    Mayr, M. I., S. Hümmer, J. Bormann, T. Grüner, S. Adio, G. Woehlke, and T. U. Mayer. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr. Biol. 17:488–498, 2007.CrossRefGoogle Scholar
  30. 30.
    McCoy, K. M., E. S. Tubman, A. Claas, D. Tank, S. A. Clancy, E. T. O’Toole, J. Berman, and D. J. Odde. Physical limits on kinesin-5 mediated chromosome congression in the smallest mitotic spindles. Mol. Biol. Cell 26:3999–4014, 2015.CrossRefGoogle Scholar
  31. 31.
    Mische, S., Y. He, L. Ma, M. Li, M. Serr, and T. S. Hays. Dynein light intermediate chain: an essential subunit that contributes to spindle checkpoint inactivation. Mol. Biol. Cell 19:4918–4929, 2008.CrossRefGoogle Scholar
  32. 32.
    Moore, D. S., and G. McCabe. Introduction to the practice of statistics, Vol. Sixth. New York: WH Freeman and Company, 2009.zbMATHGoogle Scholar
  33. 33.
    O’Connell, C. B., J. Loncarek, P. Hergert, A. Kourtidis, D. S. Conklin, and A. Khodjakov. The spindle assembly checkpoint is satisfied in the absence of interkinetochore tension during mitosis with unreplicated genomes. J. Cell Biol. 183:29–36, 2008.CrossRefGoogle Scholar
  34. 34.
    O’Connell, C. B., J. Lončarek, P. Kaláb, and A. Khodjakov. Relative contributions of chromatin and kinetochores to mitotic spindle assembly. J. Cell Biol. 187:43–51, 2009.CrossRefGoogle Scholar
  35. 35.
    Orth, J. D., Y. Tang, J. Shi, C. T. Loy, C. Amendt, C. Wilm, F. T. Zenke, and T. J. Mitchison. Quantitative live imaging of cancer and normal cells treated with Kinesin-5 inhibitors indicates significant differences in phenotypic responses and cell fate. Mol. Cancer Ther. 7:3480–3489, 2008.CrossRefGoogle Scholar
  36. 36.
    Rieder, C. L., E. A. Davison, L. C. Jensen, L. Cassimeris, and E. D. Salmon. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103:581–591, 1986.CrossRefGoogle Scholar
  37. 37.
    Rieder, C. L., and H. Maiato. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell 7:637–651, 2004.CrossRefGoogle Scholar
  38. 38.
    Rogers, S. L., G. C. Rogers, D. J. Sharp, and R. D. Vale. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158:873–884, 2002.CrossRefGoogle Scholar
  39. 39.
    Roof, D. M., P. B. Meluh, and M. D. Rose. Kinesin-related proteins required for assembly of the mitotic spindle. J. Cell Biol. 118:95–108, 1992.CrossRefGoogle Scholar
  40. 40.
    Roostalu, J., C. Hentrich, P. Bieling, I. A. Telley, E. Schiebel, and T. Surrey. Directional switching of the kinesin Cin8 through motor coupling. Science 332:94–99, 2011.CrossRefGoogle Scholar
  41. 41.
    Savoian, M. S., M. K. Gatt, M. G. Riparbelli, G. Callaini, and D. M. Glover. Drosophila Klp67A is required for proper chromosome congression and segregation during meiosis I. J. Cell Sci. 117:3669–3677, 2004.CrossRefGoogle Scholar
  42. 42.
    Savoian, M. S., and D. M. Glover. Drosophila Klp67A binds prophase kinetochores to subsequently regulate congression and spindle length. J. Cell Sci. 123:767–776, 2010.CrossRefGoogle Scholar
  43. 43.
    Sawin, K., K. LeGuellec, M. Phillipe, and T. J. Mitchison. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359:540–543, 1992.CrossRefGoogle Scholar
  44. 44.
    Seetapun, D., B. T. Castle, A. J. McIntyre, P. T. Tran, and D. J. Odde. Estimating the microtubule GTP cap size in vivo. Curr. Biol. 22:1681–1687, 2012.CrossRefGoogle Scholar
  45. 45.
    Sharp, D.J., K.L. McDonald, H.M. Brown, H.J. Matthies, C. Walczak, R.D. Vale, T.J. Mitchison, and J.M. Scholey. The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. J. Cell Biol. 144:125–138, 1999Google Scholar
  46. 46.
    Sharp, D. J., K. R. Yu, J. C. Sisson, W. Sullivan, and J. M. Scholey. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nat. Cell Biol. 1:51–54, 1999.CrossRefGoogle Scholar
  47. 47.
    Sprague, B. L., C. G. Pearson, P. S. Maddox, K. S. Bloom, E. D. Salmon, and D. J. Odde. Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys. J. Elsevier 84:3529–3546, 2003.CrossRefGoogle Scholar
  48. 48.
    Straight, A. F., J. W. Sedat, and A. W. Murray. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143:687–694, 1998.CrossRefGoogle Scholar
  49. 49.
    Stumpff, J., G. von Dassow, M. Wagenbach, C. Asbury, and L. Wordeman. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 14:252–262, 2008.CrossRefGoogle Scholar
  50. 50.
    Stumpff, J., M. Wagenbach, A. Franck, C.L. Asbury, and L. Wordeman. Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension. Dev. Cell Elsevier Inc. 22:1017–29, 2012.Google Scholar
  51. 51.
    Vale, R. D., J. A. Spudich, and E. R. Griffis. Dynamics of myosin, microtubules, and Kinesin-6 at the cortex during cytokinesis in Drosophila S2 cells. J. Cell Biol. 186:727–738, 2009.CrossRefGoogle Scholar
  52. 52.
    Varga, V., J. Helenius, K. Tanaka, A. A. Hyman, T. U. Tanaka, and J. Howard. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat. Cell Biol. 8:957–962, 2006.CrossRefGoogle Scholar
  53. 53.
    Wargacki, M. M., J. C. Tay, E. G. Muller, C. L. Asbury, and T. N. Davis. Kip3, the yeast kinesin-8, is required for clustering of kinetochores at metaphase. Cell Cycle 9:2581–2588, 2010.CrossRefGoogle Scholar
  54. 54.
    Winey, M., C. L. Mamay, E. T. O’Toole, D. N. Mastronarde, T. H. Giddings, Jr, K. L. McDonald, and J. R. McIntosh. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129:1601–1615, 1995.CrossRefGoogle Scholar
  55. 55.
    Wise, D. A., and B. R. Brinkley. Mitosis in cells with unreplicated genomes (MUGs): spindle assembly and behavior of centromere fragments. Cell Motil. Cytoskeleton 36:291–302, 1997.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Genetics, Cell Biology, and DevelopmentUniversity of MinnesotaMinneapolisUSA

Personalised recommendations