Cellular and Molecular Bioengineering

, Volume 10, Issue 5, pp 371–386 | Cite as

Phenotypically Screened Carbon Nanoparticles for Enhanced Combinatorial Therapy in Triple Negative Breast Cancer

  • Taylor Kampert
  • Santosh K. Misra
  • Indrajit Srivastava
  • Indu Tripathi
  • Dipanjan Pan
Article

Abstract

Introduction

Triple negative breast cancer (TNBC) is a highly aggressive type of breast cancer with high resistance to current standard therapies. We demonstrate that phenotypically stratified carbon nanoparticle is highly effective in delivering a novel combinatorial triple drug formulation for synergistic regression of TNBC in vitro and in vivo.

Method

The combinatorial formulation is comprised of repurposed inhibitors of STAT3 (nifuroxazide), topoisomerase-II-activation-pathway (amonafide) and NFκb (pentoxifylline). Synergistic effect of drug combination was established in a panel of TNBC-lines comprising mesenchymal-stem-like, mesenchymal and basal-like cells along with non-TNBC-cells. The delivery of combinatorial drug formulation was achieved using a phenotypically screened carbon nanoparticles for TNBC cell lines.

Results

Results indicated a remarkable five-fold improvement (IC50-6.75 µM) from the parent drugs with a combinatorial index <1 in majority of the TNBC cells. Multi-compartmental carbon nanoparticles were then parametrically assessed based on size, charge (positive/negative/neutral) and chemistry (functionalities) to study their likelihood of crossing endocytic barriers from phenotypical standpoint in TNBC lines. Interestingly, a combination of clathrin mediated, energy and dynamin dependent pathways were predominant for sulfonated nanoparticles, whereas pristine and phospholipid particles followed all the investigated endocytic pathways.

Conclusions

An exactitude ‘omics’ approach helps to predict that phospholipid encapsulated-particles will predominantly accumulate in TNBC comprising the drug-‘cocktail’. We investigated the protein expression effects inducing synergistic effect and simultaneously suppressing drug resistance through distinct mechanisms of action.

Supplementary material

12195_2017_490_MOESM1_ESM.docx (188 kb)
Supplementary material 1 (DOCX 188 kb)

References

  1. 1.
    Allen, C., Y. Yu, A. Eisenberg, and D. Maysinger. Cellular internalization of PCL20-b-PEO44 block copolymer micelles. Biochim. Biophys. Acta. 1421:32, 1999.CrossRefGoogle Scholar
  2. 2.
    Andersson, B. S., M. Beran, M. Bakic, L. E. Silberman, R. A. Newman, and L. A. Zwelling. In vitro toxicity and DNA cleaving capacity of benzisoquinonlinedione (nafimide; NSC 308847) in human leukemia. Cancer Res. 1987:47, 1040.Google Scholar
  3. 3.
    Arvizo, R. R., S. Rana, O. R. Miranda, R. Bhattacharya, V. M. Rotello, and P. Mukherjee. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine. 7:580, 2011.CrossRefGoogle Scholar
  4. 4.
    Brana, M. F., and A. M. Sanz. Synthesis and cytostatic activity of benz[de]isoqinolin-1,3-diones. Structure-activity relationships. Eur. J. Med. Chem. 16:207, 1981.Google Scholar
  5. 5.
    Brenton, J. D., L. A. Carey, A. A. Ahmed, and C. Caldas. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J. Clin. Oncol. 23:7350, 2005.CrossRefGoogle Scholar
  6. 6.
    Brigger, I., C. Dubernet, and P. Couvreur. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 64:24, 2012.CrossRefGoogle Scholar
  7. 7.
    Che-Ming, J. H., S. Aryal, and L. Zhang. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 1:323, 2010.CrossRefGoogle Scholar
  8. 8.
    Chen, X., F. Tian, X. Zhang, and W. Wang. Internalization pathways of nanoparticles and their interaction with a vesicle. Soft Matter. 9:7592, 2013.CrossRefGoogle Scholar
  9. 9.
    Chen, Y., S. Wang, X. Lu, H. Zhang, Y. Fu, and Y. Luo. Cholesterol sequestration by nystatin enhances the uptake and activity of endostatin in endothelium via regulating distinct endocytic pathways. Blood. 117:6392, 2011.CrossRefGoogle Scholar
  10. 10.
    Cho, E. C., J. W. Xie, P. A. Wurm, and Y. N. Xia. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with I2/KI etchant. Nano Lett. 2009:9, 1080.Google Scholar
  11. 11.
    Conner, S. D., and S. L. Schmid. Regulated portals of entry into the cell. Nature. 422:37, 2003.CrossRefGoogle Scholar
  12. 12.
    Crown, J., J. O’Shaughnessy, and G. Gullo. Emerging targeted therapies in triple-negative breast cancer. Ann. Oncol. 23(vi5):6, 2012.Google Scholar
  13. 13.
    Davis, M. E., Z. G. Chen, and D. M. Shin. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7:771, 2008.CrossRefGoogle Scholar
  14. 14.
    Doherty, G. J., and H. T. McMahon. Mechanisms of endocytosis. Ann. Rev. Biochem. 78:857, 2009.CrossRefGoogle Scholar
  15. 15.
    Elhissi, A. M. A., W. Ahmed, I. U. Hassan, V. R. Dhanak, and A. D’Emanuele. Carbon nanotubes in cancer therapy and drug delivery. J. Drug Deliv. 2012:837327, 2012.CrossRefGoogle Scholar
  16. 16.
    Farokhzad, O. C., and R. Langer. Impact of nanotechnology on drug delivery. ACS Nano. 3(1):16, 2009.CrossRefGoogle Scholar
  17. 17.
    Ferrari, M. Actin reorganization contributes to loss of cell adhesion in pemphigus vulgaris. Nat. Rev. Cancer. 5:161, 2005.CrossRefGoogle Scholar
  18. 18.
    Gliem, M., W.-M. Heupel, V. Spindler, G. S. Harms, and J. Waschke. Actin reorganization contributes to loss of cell adhesion in pemphigus vulgaris. Am. J. Physiol. 299(3):606, 2010.CrossRefGoogle Scholar
  19. 19.
    He, H., L. A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo, and C. Pham-Huy. Carbon nanotubes: applications in pharmacy and medicine. BioMed Res. Int., 2013Google Scholar
  20. 20.
    Ivanov, A. I. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol. Biol. 440:15, 2008.CrossRefGoogle Scholar
  21. 21.
    Kim, J. S., T. J. Yoon, K. N. Yu, M. S. Noh, M. Woo, B. G. Kim, K. H. Lee, B. H. Sohn, S. B. Park, J. K. Lee, and M. H. Cho. Selective targeting of gold nanorods at the mitochondria of cancer cells: implications of cancer therapy. J. Vet. Sci. 11:772, 2006.Google Scholar
  22. 22.
    Kirchhausen, T., E. Macia, and H. E. Pelish. Use of dynasore, the small molecule inhibitor of dynamin, in the regulation of endocytosis. Methods Enzymol. 438:77, 2008.CrossRefGoogle Scholar
  23. 23.
    Kostarelos, K., L. Lacerda, G. Pastorin, W. Wi, S. Wieckowski, J. Luangsivilay, S. Godefroy, D. Pantarotto, J. P. Briand, S. Muller, M. Prato, and A. Bianco. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2:108, 2007.CrossRefGoogle Scholar
  24. 24.
    Kumari, S., M. G. Swetha, and S. Mayor. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 20:256, 2010.CrossRefGoogle Scholar
  25. 25.
    Liang, M., I. C. Lin, M. R. Whittaker, R. F. Minchin, M. J. Monteiro, and I. Toth. Cellular uptake of densely packed polymer coatings on gold nanoparticles. ACS Nano. 4:403, 2010.CrossRefGoogle Scholar
  26. 26.
    Liu, Z., and X. J. Liang. Nano-carbons as theranostics. Theranostic 2(3):235, 2012.CrossRefGoogle Scholar
  27. 27.
    Lundqvist, M., J. Stigler, G. Elia, I. Lynch, T. Cedervall, and A. K. Dawson. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 105:14265, 2008.CrossRefGoogle Scholar
  28. 28.
    Macia, E., M. Ehrlich, R. Massol, E. Boucrot, C. Bruneer, and T. Kirchhausen. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell. 10(6):839, 2006.CrossRefGoogle Scholar
  29. 29.
    Madani, S. Y., N. Naderi, O. Dissanayake, A. Tan, and A. M. Seifalian. A new era of cancer treatmemt: carbon nanotubes as drug delivery tools. Int. J. Nanomed. 6:2963–2979, 2011.Google Scholar
  30. 30.
    Matsumura, Y., and H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agents smancs. Cancer Res. 46:6387, 1986.Google Scholar
  31. 31.
    Mc Mahon, H. T., and E. Boucrot. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12:517, 2011.CrossRefGoogle Scholar
  32. 32.
    Michael, M. D., B. C. Christopher, B. Jessica, S. Kelly, W. Linda, S. K. Gary, F. Vita, G. David, G. Robert, and H. Chris. Optimized high-throughtput microRNA expression profiling provides novel biomarker assessment of clinical prostrate and breast cancer biopsies. Mol. Cancer 5:24, 2006.CrossRefGoogle Scholar
  33. 33.
    Misra, S. K., H.-H. Chang, P. Mukherjee, S. Tiwari, A. Ohoka, and D. Pan. Regulating biocompatibility of carbon spheres via defined nanoscale chemistry and a careful selection of surface functionalites. Sci. Rep. 5:14986, 2015.CrossRefGoogle Scholar
  34. 34.
    Misra, S. K., J. Kus, S. Kim, and D. Pan. Nanoscopic poly-DNA-cleaver for breast cancer regression with induced oxidative damage. Mol. Pharm. 2014:33, 1976.Google Scholar
  35. 35.
    Misra, S. K., P. Mukherjee, H. H. Chang, S. Tiwari, M. Gryka, R. Bhargava, and D. Pan. Multi-functionality redefined with colloidal carotene carbon nanoparticles for synchronized chemical imaging, enriched cellular uptake and therapy. Sci Rep. 6:29299, 2016.CrossRefGoogle Scholar
  36. 36.
    Misra, S. K., F. Ostadhossein, E. Daza, E. V. Johnson, and D. Pan. Hyperspectral imaging offers visual and quantitative evidence of drug release from Zwitterionic-Phospholipid-Nanocarbon when concurrently tracked in 3D intracellular space. Adv. Funct. Mater. 26:8031, 2016.CrossRefGoogle Scholar
  37. 37.
    Misra, S. K., I. Srivastava, I. Tripathi, E. Daza, F. Ostadhossein, and D. Pan. Macromolecularly “caged” carbon nanoparticle for intracellular trafficking via switchable photoluminescence. J. Am. Chem. Soc. 139(5):1746–1749, 2017.CrossRefGoogle Scholar
  38. 38.
    Misra, S. K., X. Wang, I. Srivastava, M. K. Imgruet, R. W. Graff, A. Ohoka, T. L. Kampert, H. Gao, and D. Pan. Combinatorial therapy for triple negative breast cancer using hyperstar polymer-based nanoparticles. Chem. Commun. 51:16710, 2005.CrossRefGoogle Scholar
  39. 39.
    Misra, S. K., M. Ye, S. Kim, and D. Pan. Highly efficient anti-cancer therapy using scorpion ‘NanoVenin’. Chem. Commun. 50:13220, 2014.CrossRefGoogle Scholar
  40. 40.
    Mukherjee, P., S. K. Misra, M. C. Gryka, H.-H. Chang, S. Tiwari, W. L. Wilson, J. W. Scott, R. Bhargava, and D. Pan. Tunable luminescent carbon nanospheres with well-defined nanoscale chemistry for synchronized imaging and therapy. Small 36:4691, 2016.Google Scholar
  41. 41.
    Ostadhossein, F., and D. Pan. Functional carbon nanodots for multiscale imaging and therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9(3):e1436, 2017. doi:10.1002/wnan.1436.CrossRefGoogle Scholar
  42. 42.
    Papakonstanti, E. A., and C. Stournaras. Cell responses regulated by early reorganization of actin cytoskeleton. FEBS Lett. 582(14):2120, 2008.CrossRefGoogle Scholar
  43. 43.
    Qin, W., D. Ding, J. Liu, W. Z. Yuan, Y. Hu, B. Liu, and B. Z. Tang. Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv. Funct. Mater. 22(4):771, 2011.CrossRefGoogle Scholar
  44. 44.
    Rakha, E. A., M. E. El-Sayed, A. R. Green, A. H. S. Lee, J. F. Robertson, and I. O. Ellis. Prognostic markers in triple-negative breast cancer. Cancer 109:25, 2007.CrossRefGoogle Scholar
  45. 45.
    Ren, X., L. Duan, Q. He, Z. Zhang, Y. Zhou, D. Wu, J. Pan, D. Pei, and K. Ding. Identification of niclosamide as a new small-molecule inhibitor of the STAT3 signalling pathway. ACS Med. Chem. Lett. 1:454, 2010.CrossRefGoogle Scholar
  46. 46.
    Saha, K., S. T. Kim, B. Yan, O. R. Miranda, F. S. Alfonso, D. Shlosman, and V. M. Rotello. Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small. 9(2):300, 2013.CrossRefGoogle Scholar
  47. 47.
    Sigismund, J. S., T. Woelk, C. Puri, E. Maspero, C. Tacchetti, P. Transidico, P. P. DiFiore, and S. Polo. Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl. Acad. Sci. USA 102:2760, 2005.CrossRefGoogle Scholar
  48. 48.
    Srivastava, I., S. K. Misra, F. Ostadhossein, E. Daza, J. Singh, and D. Pan. Surface chemistry of carbon nanoparticles functionally select their uptake in various stages of cancer cells. Nano Res. 2017. doi:10.1007/s12274-017-1518-2.Google Scholar
  49. 49.
    Stuart, A. D., and T. D. K. Brown. Entry of feline calicivirus is dependent on clathrin-mediated endocytosis and acidification in endosomes. J. Cell Virol. 80(15):7500, 2006.CrossRefGoogle Scholar
  50. 50.
    Swanson, J. A., and C. Watts. Macropinocytosis. Trends Cell Biol. 5:424, 1995.CrossRefGoogle Scholar
  51. 51.
    Vercauteren, D., R. E. Vandenbroucke, A. T. Jones, J. Rejman, J. Demeester, S. C. DeSmedt, N. N. Sanders, and K. Braeckmans. The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol. Therapy. 18(3):561, 2010.CrossRefGoogle Scholar
  52. 52.
    Walkey, C. D., J. B. Olsen, H. Guo, A. Emill, and W. C. W. Chan. Nanoparticle size and surface chemistry determine serum proteins adsorption and macrophage uptake. J. Am. Chem. Soc. 134(4):2139, 2012.CrossRefGoogle Scholar
  53. 53.
    Wang, T., J. Bai, X. Jiang, and G. U. Nienhaus. Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano. 6(2):1251, 2012.CrossRefGoogle Scholar
  54. 54.
    Wang, Y.-C., T.-K. Chao, C.-C. Chang, Y.-T. Yo, M.-H. Yu, and H.-C. Lai. Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells. PLoS ONE 8:74538, 2013.CrossRefGoogle Scholar
  55. 55.
    Wang, L., Y. Liu, W. Li, X. Jiang, Y. Ji, X. Wu, L. Xu, Y. Qiu, K. Zhao, T. Wei, Y. Li, Y. Zhao, and C. Chen. Selective targeting of gold nanorods at the mitochondria of cancer cells: implications of cancer therapy. Nano Lett. 11(2):772, 2011.CrossRefGoogle Scholar
  56. 56.
    Wang, L. H., K. G. Rothberg, and R. G. Anderson. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol. 123(5):1107, 1993.CrossRefGoogle Scholar
  57. 57.
    Xin-Sheng, D., W. Shuiliang, D. Anlong, L. Bolin, E. M. Susan, L. E. Stuart, W.-A. Reema, and T. D. Ann. Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Ann. Cell Cycle 11:367, 2012.CrossRefGoogle Scholar
  58. 58.
    Ye, T., Y. Xiong, Y. Yan, Y. Xia, X. Song, L. Liu, D. Li, N. Wang, L. Zhang, Y. Zhu, J. Zeng, Y. Wei, and L. Yu. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS ONE 9:P1, 2014.Google Scholar
  59. 59.
    Youan, B. B. Impact of nanoscience and nanotechnology on controlled drug delivery. Nanomedicine. 3(4):401, 2008.CrossRefGoogle Scholar
  60. 60.
    Zhang, S. L., J. Li, G. Lykotrafitis, G. Bao, and S. Suresh. Size-dependent endocytosis of nanoparticles. Adv. Mater. 21:419, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Taylor Kampert
    • 1
    • 2
    • 3
    • 4
    • 5
  • Santosh K. Misra
    • 1
    • 2
    • 3
    • 4
    • 5
  • Indrajit Srivastava
    • 1
    • 2
    • 3
    • 4
    • 5
  • Indu Tripathi
    • 1
    • 2
    • 3
    • 4
    • 5
  • Dipanjan Pan
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Beckman Institute of Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Carle Foundation HospitalUrbanaUSA
  5. 5.Institute for Sustainability in Energy and EnvironmentUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations