Advertisement

Cellular and Molecular Bioengineering

, Volume 10, Issue 2, pp 153–161 | Cite as

Towards a Biohybrid Lung Assist Device: N-Acetylcysteine Reduces Oxygen Toxicity and Changes Endothelial Cells’ Morphology

  • Tobias Plein
  • Anja Lena Thiebes
  • Nicole Finocchiaro
  • Felix Hesselmann
  • Thomas Schmitz-Rode
  • Stefan JockenhoevelEmail author
  • Christian G. Cornelissen
Article

Abstract

The development of an endothelialized membrane oxygenator requires solution strategies combining the knowledge of oxygenators with endothelial cells’ biology. Since it is well known that exposing cells towards pure oxygen causes oxidative stress, this aspect has to be taken into account in the development of a biohybrid oxygenator system. N-Acetylcysteine (NAC) is known for its antioxidant properties in cells. We tested its applicability for the development of an endothelialized oxygenator model. Cultivating human umbilical vein derived endothelial cells (HUVEC) up to 6 days with increasing concentrations of NAC from 1 to 30 mM revealed NAC toxicity at concentrations from 20 mM. Cell density clearly decreased after radical oxygen species exposure in non-NAC pretreated cells compared to 20 mM NAC precultured HUVEC after 3 and 6 days. Also the survival rate after ROS treatment could be restored by incubation with NAC from 15 to 25 mM for all time points. NAC treated cells changed their morphology from typical endothelial cells’ cobblestone pattern to a fusiform, elongated configuration. Transformed cells were still positive for typical endothelial cell markers. Our present results show the potential of NAC for the protection of an endothelial cell layer in an endothelialized membrane oxygenator due to its antioxidative properties. Moreover, NAC induces a morphological change in HUVEC similar to dynamic cultivation procedures.

Keywords

Tissue engineering Extracorporeal membrane oxygenation ECMO Extracorporeal carbon dioxide removal ECCO2Oxygenator 

Notes

Acknowledgments

We thank Ting-Yi Yang for technical assistance.

Conflict of interest

Dr. Cornelissen is grant holder of the IZKF Project Number T12 that made this research possible. Mr. Plein, Dr. Thiebes, Dr. Finocchiaro, Mr. Hesselmann, Prof. Steinseifer and Prof. Jockenhoevel declare that they do not have any conflict of interest.

Funding

Supported by a Grant from the Interdisciplinary Center for Clinical Research within the faculty of Medicine at the RWTH Aachen University (IZKF Project Number T12).

Ethical approval

Institutional review was obtained for the use of donated human umbilical cords (vote of the local ethics committee: EK 019/16). No further studies involving human subjects were carried out. The research did not involve animal studies.

References

  1. 1.
    Basmadjian, D., M. V. Sefton, and S. A. Baldwin. Coagulation on biomaterials in flowing blood: some theoretical considerations. Biomaterials 18:1511, 1997.CrossRefGoogle Scholar
  2. 2.
    Biglioli, P., A. Cannata, F. Alamanni, M. Naliato, M. Porqueddu, M. Zanobini, E. Tremoli, and A. Parolari. Biological effects of off-pump vs. on-pump coronary artery surgery: focus on inflammation, hemostasis and oxidative stress. Eur. J. Cardiothorac. Surg. 24:260, 2003.CrossRefGoogle Scholar
  3. 3.
    Cai, T., G. Fassina, M. Morini, M. G. Aluigi, L. Masiello, G. Fontanini, F. D’Agostini, S. De Flora, D. M. Noonan, and A. Albini. N-acetylcysteine inhibits endothelial cell invasion and angiogenesis. Lab. Investig.: J Tech Methods Pathol 79:1151, 1999.Google Scholar
  4. 4.
    Cho, K. S., E. H. Lee, J. S. Choi, and C. K. Joo. Reactive oxygen species-induced apoptosis and necrosis in bovine corneal endothelial cells. Investig. Ophthalmol. Vis. Sci. 40:911, 1999.Google Scholar
  5. 5.
    Cotgreave, I., P. Moldeus, and I. Schuppe. The metabolism of N-acetylcysteine by human endothelial cells. Biochem. Pharmacol. 42:13, 1991.CrossRefGoogle Scholar
  6. 6.
    Dewey, Jr, C. F., S. R. Bussolari, M. A. Gimbrone, Jr, and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177, 1981.CrossRefGoogle Scholar
  7. 7.
    Diaz-Guzman, E., C. W. Hoopes, and J. B. Zwischenberger. The evolution of extracorporeal life support as a bridge to lung transplantation. Asaio J. 59:3, 2013.CrossRefGoogle Scholar
  8. 8.
    Dietrich, M., N. Finocchiaro, S. Olszweski, J. Arens, T. Schmitz-Rode, J. Sachweh, S. Jockenhoevel, and C. G. Cornelissen. ENDOXY: development of a biomimetic oxygenator-test-device. PLoS ONE 10:e0142961, 2015.CrossRefGoogle Scholar
  9. 9.
    Estrada, R., G. A. Giridharan, M. D. Nguyen, T. J. Roussel, M. Shakeri, V. Parichehreh, S. D. Prabhu, and P. Sethu. Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro. Anal. Chem. 83:3170, 2011.CrossRefGoogle Scholar
  10. 10.
    Freedman, J. E. Oxidative stress and platelets. Arterioscler. Thromb. Vasc. Biol. 28:s11, 2008.CrossRefGoogle Scholar
  11. 11.
    Gillissen, A., and D. Nowak. Characterization of N-acetylcysteine and ambroxol in anti-oxidant therapy. Respir. Med. 92:609, 1998.CrossRefGoogle Scholar
  12. 12.
    Heard, K. J. Acetylcysteine for acetaminophen poisoning. N. Engl. J. Med. 359:285, 2008.CrossRefGoogle Scholar
  13. 13.
    Hess, C., B. Wiegmann, A. N. Maurer, P. Fischer, L. Moller, U. Martin, A. Hilfiker, A. Haverich, and S. Fischer. Reduced thrombocyte adhesion to endothelialized poly 4-methyl-1-pentene gas exchange membranes: a first step toward bioartificial lung development. Tissue Eng. Part A 16:3043, 2010.CrossRefGoogle Scholar
  14. 14.
    Hong, S. Y., H. W. Gil, J. O. Yang, E. Y. Lee, H. K. Kim, S. H. Kim, Y. H. Chung, E. M. Lee, and S. K. Hwang. Effect of high-dose intravenous N-acetylcysteine on the concentration of plasma sulfur-containing amino acids. Korean J. Intern. Med. 20:217, 2005.CrossRefGoogle Scholar
  15. 15.
    Kallet, R. H., and M. A. Matthay. Hyperoxic acute lung injury. Respir. Care 58:123, 2013.CrossRefGoogle Scholar
  16. 16.
    Kokura, S., R. E. Wolf, T. Yoshikawa, D. N. Granger, and T. Y. Aw. Molecular mechanisms of neutrophil-endothelial cell adhesion induced by redox imbalance. Circ. Res. 84:516, 1999.CrossRefGoogle Scholar
  17. 17.
    Levesque, M. J., R. M. Nerem, and E. A. Sprague. Vascular endothelial-cell proliferation in culture and the influence of flow. Biomaterials 11:702, 1990.CrossRefGoogle Scholar
  18. 18.
    Maulik, N. Redox regulation of vascular angiogenesis. Antioxid. Redox Signal. 4:783, 2002.CrossRefGoogle Scholar
  19. 19.
    Mitsumata, M., R. M. Nerem, R. W. Alexander, and B. Berk. Shear-stress inhibits endothelial-cell proliferation by growth arrest in the G0/G1 phase of the cell-cycle. FASEB J. 5:A527, 1991.Google Scholar
  20. 20.
    Mukherjee, T. K., A. K. Mishra, S. Mukhopadhyay, and J. R. Hoidal. High concentration of antioxidants N-acetylcysteine and mitoquinone-Q induces intercellular adhesion molecule 1 and oxidative stress by increasing intracellular glutathione. J. Immunol. 178:1835, 2007.CrossRefGoogle Scholar
  21. 21.
    Park, H. S., H. Y. Jung, E. Y. Park, J. Kim, W. J. Lee, and Y. S. Bae. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J. Immunol. (Baltimore, MD: 1950) 173:3589, 2004.CrossRefGoogle Scholar
  22. 22.
    Peek, G. J., F. Clemens, D. Elbourne, R. Firmin, P. Hardy, C. Hibbert, H. Killer, M. Mugford, M. Thalanany, R. Tiruvoipati, A. Truesdale, and A. Wilson. CESAR: conventional ventilatory support vs extracorporeal membrane oxygenation for severe adult respiratory failure. BMC Health 6:163, 2006.CrossRefGoogle Scholar
  23. 23.
    Rungatscher, A., M. Tessari, C. Stranieri, E. Solani, D. Linardi, E. Milani, A. Montresor, F. Merigo, B. Salvetti, T. Menon, and G. Faggian. Oxygenator is the main responsible for leukocyte activation in experimental model of extracorporeal circulation: a cautionary tale. Mediat. Inflamm. 2015. doi: 10.1155/2015/484979.Google Scholar
  24. 24.
    Sala, R., E. Moriggi, G. Corvasce, and D. Morelli. Protection by N-acetylcysteine against pulmonary endothelial-cell damage induced by oxidant injury. Eur. Respir. J. 6:440, 1993.Google Scholar
  25. 25.
    Sato, M., M. J. Levesque, and R. M. Nerem. Micropipette aspiration of cultured bovine aortic endothelial-cells exposed to shear-stress. Arteriosclerosis 7:276, 1987.CrossRefGoogle Scholar
  26. 26.
    Sun, S., Y. Yue, X. Huang, and D. Meng. Protein adsorption on blood-contact membranes. J. Membr. Sci. 222:3, 2003.CrossRefGoogle Scholar
  27. 27.
    Wan, S., J. L. LeClerc, and J. L. Vincent. Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest 112:676, 1997.CrossRefGoogle Scholar
  28. 28.
    Wang, C., B. M. Baker, C. S. Chen, and M. A. Schwartz. Endothelial cell sensing of flow direction. Arterioscler. Thromb. Vasc. Biol. 33:2130, 2013.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  1. 1.Department of Biohybrid & Medical Textiles (BioTex) at AME-Helmholtz Institute for Biomedical Engineering, ITA-Institut für TextiltechnikRWTH Aachen UniversityAachenGermany
  2. 2.Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz InstituteRWTH Aachen UniversityAachenGermany
  3. 3.Department for Internal Medicine – Section for Pneumology, Medical FacultyRWTH Aachen UniversityAachenGermany
  4. 4.Aachen-Maastricht-Institute for Biobased Materials (AMIBM), Brightlands Chemelot CampusMaastricht UniversityGeleenThe Netherlands

Personalised recommendations