Cellular and Molecular Bioengineering

, Volume 10, Issue 1, pp 63–74 | Cite as

Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality

  • Michael J. RaymondJr.
  • Poulomi Ray
  • Gurleen Kaur
  • Michael Fredericks
  • Ajay V. Singh
  • Leo Q. WanEmail author


Intrinsic cell chirality has been implicated in the left–right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.


Cell chirality Cell polarity Cell morphology Nuclear morphology 










The authors thank Parker Haynes for his help on Python coding. The authors would like to thank National Institutes of Health, National Science Foundation, American Heart Association, and March of Dimes for funding Support. Leo Q. Wan is a Pew Scholar in Biomedical Sciences, supported by the Pew Charitable Trusts.

Conflict of interest

All authors, Michael J. Raymond, Poulomi Ray, Gurleen Kaur, Michael Fredericks, Ajay V. Singh, and Leo Q. Wan, declare that they have no conflict of interest.

Statements of Human and Animal Rights and Informed Consent

No human or animal research was conducted in this study.

Supplementary material

12195_2016_467_MOESM1_ESM.avi (11.2 mb)
Supplementary material 1 (AVI 11433 kb)
12195_2016_467_MOESM2_ESM.docx (610 kb)
Supplementary material 2 (DOCX 609 kb)


  1. 1.
    Andrew, D. J., and A. J. Ewald. Morphogenesis of epithelial tubes: insights into tube formation, elongation, and elaboration. Dev. Biol. 341:34–55, 2010.CrossRefGoogle Scholar
  2. 2.
    Aylsworth, A. S. Clinical aspects of defects in the determination of laterality. Am. J. Med. Genet. 101:345–355, 2001.CrossRefGoogle Scholar
  3. 3.
    Balcarova-Stander, J., S. E. Pfeiffer, S. D. Fuller, and K. Simons. Development of cell surface polarity in the epithelial Madin–Darby canine kidney (MDCK) cell line. EMBO J. 3:2687–2694, 1984.Google Scholar
  4. 4.
    Callander, D. C., M. R. Alcorn, B. Birsoy, and J. H. Rothman. Natural reversal of left-right gut/gonad asymmetry in C. elegans males is independent of embryonic chirality. Genesis 52:581–587, 2014.CrossRefGoogle Scholar
  5. 5.
    Chen, T. H., J. J. Hsu, X. Zhao, C. Guo, M. N. Wong, Y. Huang, Z. Li, A. Garfinkel, C. M. Ho, Y. Tintut, and L. L. Demer. Left-right symmetry breaking in tissue morphogenesis via cytoskeletal mechanics. Circ. Res. 110:551–559, 2012.CrossRefGoogle Scholar
  6. 6.
    Dahl, K. N., A. J. Ribeiro, and J. Lammerding. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102:1307–1318, 2008.CrossRefGoogle Scholar
  7. 7.
    Dalby, M. J., M. O. Riehle, S. J. Yarwood, C. D. Wilkinson, and A. S. Curtis. Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp. Cell Res. 284:274–282, 2003.CrossRefGoogle Scholar
  8. 8.
    Desai, R. A., L. Gao, S. Raghavan, W. F. Liu, and C. S. Chen. Cell polarity triggered by cell-cell adhesion via E-cadherin. J. Cell Sci. 122:905–911, 2009.CrossRefGoogle Scholar
  9. 9.
    Dupin, I., E. Camand, and S. Etienne-Manneville. Classical cadherins control nucleus and centrosome position and cell polarity. J. Cell Biol. 185:779–786, 2009.CrossRefGoogle Scholar
  10. 10.
    Engelhardt, B., and H. Wolburg. Mini-review: transendothelial migration of leukocytes: through the front door or around the side of the house? Eur. J. Immunol. 34:2955–2963, 2004.CrossRefGoogle Scholar
  11. 11.
    Freytes, D. O., L. Q. Wan, and G. Vunjak-Novakovic. Geometry and force control of cell function. J. Cell. Biochem. 108:1047–1058, 2009.CrossRefGoogle Scholar
  12. 12.
    Hatori, R., T. Ando, T. Sasamura, N. Nakazawa, M. Nakamura, K. Taniguchi, S. Hozumi, J. Kikuta, M. Ishii, and K. Matsuno. Left-right asymmetry is formed in individual cells by intrinsic cell chirality. Mech. Dev. 133:146–162, 2014.CrossRefGoogle Scholar
  13. 13.
    Itano, N., S. Okamoto, D. Zhang, S. A. Lipton, and E. Ruoslahti. Cell spreading controls endoplasmic and nuclear calcium: a physical gene regulation pathway from the cell surface to the nucleus. Proc. Natl. Acad. Sci. USA 100:5181–5186, 2003.CrossRefGoogle Scholar
  14. 14.
    Jiang, X., D. A. Bruzewicz, A. P. Wong, M. Piel, and G. M. Whitesides. Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci. USA 102:975–978, 2005.CrossRefGoogle Scholar
  15. 15.
    Johnson-Leger, C., M. Aurrand-Lions, and B. A. Imhof. The parting of the endothelium: miracle, or simply a junctional affair? J. Cell Sci. 113:921–933, 2000.Google Scholar
  16. 16.
    Karlon, W. J., P. P. Hsu, S. Li, S. Chien, A. D. McCulloch, and J. H. Omens. Measurement of orientation and distribution of cellular alignment and cytoskeletal organization. Ann. Biomed. Eng. 27:712–720, 1999.CrossRefGoogle Scholar
  17. 17.
    Khatau, S. B., R. J. Bloom, S. Bajpai, D. Razafsky, S. Zang, A. Giri, P.-H. Wu, J. Marchand, A. Celedon, and C. M. Hale. The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci. Rep. 2:488, 2012.CrossRefGoogle Scholar
  18. 18.
    Khatau, S. B., C. M. Hale, P. J. Stewart-Hutchinson, M. S. Patel, C. L. Stewart, P. C. Searson, D. Hodzic, and D. Wirtz. A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. USA 106:19017–19022, 2009.CrossRefGoogle Scholar
  19. 19.
    Kim, D.-H., S. Cho, and D. Wirtz. Tight coupling between nucleus and cell migration through the perinuclear actin cap. J. Cell Sci. 127:2528–2541, 2014.CrossRefGoogle Scholar
  20. 20.
    Kvietys, P. R., and M. Sandig. Neutrophil diapedesis: paracellular or transcellular? News Physiol. Sci. 16:15–19, 2001.Google Scholar
  21. 21.
    Lauffenburger, D. A., and A. F. Horwitz. Cell migration: a physically integrated molecular process. Cell 84:359–369, 1996.CrossRefGoogle Scholar
  22. 22.
    Levin, M. Left-right asymmetry in embryonic development: a comprehensive review. Mech. Dev. 122:3–25, 2005.CrossRefGoogle Scholar
  23. 23.
    Levin, M., T. Thorlin, K. R. Robinson, T. Nogi, and M. Mercola. Asymmetries in H +/K + -ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111:77–89, 2002.CrossRefGoogle Scholar
  24. 24.
    Lovett, D. B., N. Shekhar, J. A. Nickerson, K. J. Roux, and T. P. Lele. Modulation of Nuclear Shape by Substrate Rigidity. Cell. Mol. Bioeng. 6:230–238, 2013.CrossRefGoogle Scholar
  25. 25.
    Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. USA 94:849–854, 1997.CrossRefGoogle Scholar
  26. 26.
    Mercola, M., and M. Levin. Left-right asymmetry determination in vertebrates. Annu. Rev. Cell Dev. Biol. 17:779–805, 2001.CrossRefGoogle Scholar
  27. 27.
    Nakaya, Y., and G. Sheng. EMT in developmental morphogenesis. Cancer Lett. 341:9–15, 2013.CrossRefGoogle Scholar
  28. 28.
    Okada, Y., S. Takeda, Y. Tanaka, and J. C. Izpisua. Belmonte and N. Hirokawa. Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121:633–644, 2005.CrossRefGoogle Scholar
  29. 29.
    Raymond, Jr, M. J., P. Ray, G. Kaur, A. V. Singh, and L. Q. Wan. Cellular and nuclear alignment analysis for determining epithelial cell chirality. Ann. Biomed. Eng. 44(5):1475–1486, 2015.CrossRefGoogle Scholar
  30. 30.
    Ridley, A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz. Cell migration: integrating signals from front to back. Science 302:1704–1709, 2003.CrossRefGoogle Scholar
  31. 31.
    Roychoudhuri, R., V. Putcha, and H. Moller. Cancer and laterality: a study of the five major paired organs (UK). Cancer Cause. Control 17:655–662, 2006.CrossRefGoogle Scholar
  32. 32.
    Sandson, T. A., P. Y. Wen, and M. LeMay. Reversed cerebral asymmetry in women with breast cancer. Lancet 339:523–524, 1992.CrossRefGoogle Scholar
  33. 33.
    Shibazaki, Y., M. Shimizu, and R. Kuroda. Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr. Biol. 14:1462–1467, 2004.CrossRefGoogle Scholar
  34. 34.
    Simons, K., and S. D. Fuller. Cell surface polarity in epithelia. Annu. Rev. Cell Biol. 1:243–288, 1985.CrossRefGoogle Scholar
  35. 35.
    Singh, A. V., K. K. Mehta, K. Worley, J. S. Dordick, R. S. Kane, and L. Q. Wan. Carbon nanotube-induced loss of multicellular chirality on micropatterned substrate is mediated by oxidative stress. ACS Nano 8:2196–2205, 2014.CrossRefGoogle Scholar
  36. 36.
    Taniguchi, K., R. Maeda, T. Ando, T. Okumura, N. Nakazawa, R. Hatori, M. Nakamura, S. Hozumi, H. Fujiwara, and K. Matsuno. Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis. Science 333:339–341, 2011.CrossRefGoogle Scholar
  37. 37.
    Tee, Y. H., T. Shemesh, V. Thiagarajan, R. F. Hariadi, K. L. Anderson, C. Page, N. Volkmann, D. Hanein, S. Sivaramakrishnan, M. M. Kozlov, and A. D. Bershadsky. Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat. Cell Biol. 17:445–457, 2015.CrossRefGoogle Scholar
  38. 38.
    Thery, M., V. Racine, M. Piel, A. Pepin, A. Dimitrov, Y. Chen, J. B. Sibarita, and M. Bornens. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. USA 103:19771–19776, 2006.CrossRefGoogle Scholar
  39. 39.
    Vandenberg, L. N., and M. Levin. A unified model for left–right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev. Biol. 379:1–15, 2013.CrossRefGoogle Scholar
  40. 40.
    Versaevel, M., T. Grevesse, and S. Gabriele. Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat. Commun. 3:671, 2012.CrossRefGoogle Scholar
  41. 41.
    Vicente-Manzanares, M., D. J. Webb, and A. R. Horwitz. Cell migration at a glance. J. Cell Sci. 118:4917–4919, 2005.CrossRefGoogle Scholar
  42. 42.
    Vogel, V., and M. Sheetz. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:265–275, 2006.CrossRefGoogle Scholar
  43. 43.
    Wagner, J. G., and R. A. Roth. Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacol. Rev. 52:349–374, 2000.Google Scholar
  44. 44.
    Wakida, N. M., E. L. Botvinick, J. Lin, and M. W. Berns. An intact centrosome is required for the maintenance of polarization during directional cell migration. PLoS One 5:e15462, 2010.CrossRefGoogle Scholar
  45. 45.
    Wan, L. Q., S. M. Kang, G. Eng, W. L. Grayson, X. L. Lu, B. Huo, J. Gimble, X. E. Guo, V. C. Mow, and G. Vunjak-Novakovic. Geometric control of human stem cell morphology and differentiation. Integr. Biol. 2:346–353, 2010.CrossRefGoogle Scholar
  46. 46.
    Wan, L. Q., K. Ronaldson, M. Guirguis, and G. Vunjak-Novakovic. Micropatterning of cells reveals chiral morphogenesis. Stem Cell Res. Ther. 4:24, 2013.CrossRefGoogle Scholar
  47. 47.
    Wan, L. Q., K. Ronaldson, M. Park, G. Taylor, Y. Zhang, J. M. Gimble, and G. Vunjak-Novakovic. Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proc. Natl. Acad. Sci. USA 108:12295–12300, 2011.CrossRefGoogle Scholar
  48. 48.
    Wan, L. Q., and G. Vunjak-Novakovic. Micropatterning chiral morphogenesis. Commun. Integr. Biol. 4:745–748, 2011.CrossRefGoogle Scholar
  49. 49.
    Weber, G. F., M. A. Bjerke, and D. W. DeSimone. A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev. Cell 22:104–115, 2012.CrossRefGoogle Scholar
  50. 50.
    Worley, K., A. Certo, and L. Q. Wan. Geometry-force control of stem cell fate. BioNanoScience 3:43–51, 2013.CrossRefGoogle Scholar
  51. 51.
    Worley, K. E., D. Shieh, and L. Q. Wan. Inhibition of cell-cell adhesion impairs directional epithelial migration on micropatterned surfaces. Integr. Biol. 7(5):580–590, 2015.CrossRefGoogle Scholar
  52. 52.
    Xu, J., A. Van Keymeulen, N. M. Wakida, P. Carlton, M. W. Berns, and H. R. Bourne. Polarity reveals intrinsic cell chirality. Proc. Natl. Acad. Sci. USA 104:9296–9300, 2007.CrossRefGoogle Scholar
  53. 53.
    Yamanaka, H., and S. Kondo. Rotating pigment cells exhibit an intrinsic chirality. Genes Cells 20:29–35, 2015.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Center for Biotechnology & Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of BiologyRensselaer Polytechnic InstituteTroyUSA
  4. 4.Department of Computer ScienceRensselaer Polytechnic InstituteTroyUSA
  5. 5.Center for Modeling, Simulation and Imaging in MedicineRensselaer Polytechnic InstituteTroyUSA
  6. 6.Department of Physical IntelligenceMax Planck Institute for Intelligent SystemsStuttgartGermany
  7. 7.Laboratory for Tissue Engineering and MorphogenesisRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations