Advertisement

Cellular and Molecular Bioengineering

, Volume 9, Issue 4, pp 538–545 | Cite as

Improvement in Electrotransfection of Cells Using Carbon-Based Electrodes

  • Chun-Chi Chang
  • Mao Mao
  • Yang Liu
  • Mina Wu
  • Tuan Vo-Dinh
  • Fan Yuan
Article

Abstract

Electrotransfection has been widely used as a versatile, non-viral method for gene delivery. However, electrotransfection efficiency (eTE) is still low and unstable, compared to viral methods. To understand potential mechanisms of the problems, we investigated effects of electrode materials on eTE and viability of mammalian cells. Data from the study showed that commonly used metal electrodes generated a significant amount of particles during application of pulsed electric field, which could cause precipitation of plasmid DNA from solutions, thereby reducing eTE. For aluminum electrodes, the particles were composed of aluminum hydroxide and/or aluminum oxide, and their median sizes were 300–400 nm after the buffer was pulsed 4–8 times at 400 V cm−1, 5 ms duration and 1 Hz frequency. The precipitation could be prevented by using carbon (graphite) electrodes in electrotransfection experiments. The use of carbon electrodes also increased cell viability. Taken together, the study suggested that electrodes made of electrochemically inert materials were desirable for electrotransfection of cells in vitro.

Keywords

Electrotransfection Electro-gene delivery Electroporation Carbon electrodes DNA precipitation 

Notes

Acknowledgments

The work was supported partly by grants from National Institutes of Health (GM098520) and National Science Foundation (BES-0828630).

Conflict of Interest

Chun-Chi Chang, Mao Mao, Yang Liu, Mina Wu, Tuan Vo-Dinh, and Fan Yuan declare that they have no conflict of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

References

  1. 1.
    Ayuni, E. L., A. Gazdhar, M. N. Giraud, A. Kadner, M. Gugger, M. Cecchini, T. Caus, T. P. Carrel, R. A. Schmid, and H. T. Tevaearai. In vivo electroporation mediated gene delivery to the beating heart. PLoS One 5:e14467, 2010.CrossRefGoogle Scholar
  2. 2.
    Bodles-Brakhop, A. M., R. Heller, and R. Draghia-Akli. Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments. Mol. Therapy 17:585–592, 2009.CrossRefGoogle Scholar
  3. 3.
    Chang, C.-C., M. Wu, and F. Yuan. Role of specific endocytic pathways in electrotransfection of cells. Mol. Therapy Methods Clin. Dev. 1:14058-8, 2014.CrossRefGoogle Scholar
  4. 4.
    Eynard, N., M. P. Rols, V. Ganeva, B. Galutzov, N. Sabri, and J. Teissie. Electrotransformation pathways of procaryotic and eucaryotic cells: recent developments. Bioelectrochem. Bioenerg. 44:103–110, 1997.CrossRefGoogle Scholar
  5. 5.
    Gothelf, A., and J. Gehl. Gene electrotransfer to skin; review of existing literature and clinical perspectives. Curr. Gene Ther. 10:287–299, 2010.CrossRefGoogle Scholar
  6. 6.
    Hargrave, B., H. Downey, R. J. Strange, L. Murray, C. Cinnamond, C. Lundberg, A. Israel, Y.-J. Chen, W. J. Marshall, and R. Heller. Electroporation-mediated gene transfer directly to the swine heart. Gene Ther. 20:151–157, 2013.CrossRefGoogle Scholar
  7. 7.
    Heller, L. C., and R. Heller. In vivo electroporation for gene therapy. Hum. Gene Ther. 17:890–897, 2006.CrossRefGoogle Scholar
  8. 8.
    Heller, R., and L. C. Heller. Gene electrotransfer clinical trials. Adv. Genet. 89:235–262, 2015.Google Scholar
  9. 9.
    Heller, R., M. Jaroszeski, A. Atkin, D. Moradpour, R. Gilbert, J. Wands, and C. Nicolau. In vivo gene electroinjection and expression in rat liver. FEBS Lett. 389:225–228, 1996.CrossRefGoogle Scholar
  10. 10.
    Henshaw, J., B. Mossop, and F. Yuan. Enhancement of electric field-mediated gene delivery through pretreatment of tumors with a hyperosmotic mannitol solution. Cancer Gene Ther. 18:26–33, 2010.CrossRefGoogle Scholar
  11. 11.
    Jaichandran, S., S. T. B. Yap, A. B. M. Khoo, L. P. Ho, S. L. Tien, and O. L. Kon. In vivo liver electroporation: optimization and demonstration of therapeutic efficacy. Hum. Gene Ther. 17:362–375, 2006.CrossRefGoogle Scholar
  12. 12.
    Kammerer, R., J. Barth, F. Gerken, C. Kunz, S. A. Flodstrom, and L. I. Johansson. Surface-binding-energy shifts for sodium, magnesium, and aluminum metals. Phys. Rev. B 26:3491–3494, 1982.CrossRefGoogle Scholar
  13. 13.
    Kooijmans, S. A. A., S. Stremersch, K. Braeckmans, S. C. De Smedt, A. Hendrix, M. J. A. Wood, R. M. Schiffelers, K. Raemdonck, and P. Vader. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J. Control. Release 172:229–238, 2013.CrossRefGoogle Scholar
  14. 14.
    Lepik, D., V. Jaks, L. Kadaja, S. Varv, and T. Maimets. Electroporation and carrier DNA cause p53 activation, cell cycle arrest, and apoptosis. Anal. Biochem. 318:52–59, 2003.CrossRefGoogle Scholar
  15. 15.
    Loomis-Husselbee, J. W., P. J. Cullen, R. F. Irvine, and A. P. Dawson. Electroporation can cause artefacts due to solubilization of cations from the electrode plates. Aluminum ions enhance conversion of inositol 1,3,4,5-tetrakisphosphate into inositol 1,4,5-trisphosphate in electroporated L1210 cells. Biochem. J. 277(3):883–885, 1991.CrossRefGoogle Scholar
  16. 16.
    Meaking, W. S., J. Edgerton, C. W. Wharton, and R. A. Meldrum. Electroporation-induced damage in mammalian cell DNA. Biochim. Biophys. Acta 1264:357–362, 1995.CrossRefGoogle Scholar
  17. 17.
    Mir, L. M., M. F. Bureau, J. Gehl, R. Rangara, D. Rouy, J. M. Caillaud, P. Delaere, D. Branellec, B. Schwartz, and D. Scherman. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. 96:4262–4267, 1999.CrossRefGoogle Scholar
  18. 18.
    Neumann, E., M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1:841–845, 1982.Google Scholar
  19. 19.
    Nishi, T., K. Yoshizato, S. Yamashiro, H. Takeshima, K. Sato, K. Hamada, I. Kitamura, T. Yoshimura, H. Saya, J. Kuratsu, and Y. Ushio. High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res. 56:1050–1055, 1996.Google Scholar
  20. 20.
    Potter, H., L. Weir, and P. Leder. Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. 81:7161–7165, 1984.CrossRefGoogle Scholar
  21. 21.
    Rhaese, S., H. von Briesen, H. Rubsamen-Waigmann, J. Kreuter, and K. Langer. Human serum albumin-polyethylenimine nanoparticles for gene delivery. J. Control. Release 92:199–208, 2003.CrossRefGoogle Scholar
  22. 22.
    Rosazza, C., E. Phez, J. M. Escoffre, L. Cezanne, A. Zumbusch, and M. P. Rols. Cholesterol implications in plasmid DNA electrotransfer: Evidence for the involvement of endocytotic pathways. Int. J. Pharm. 423:134–143, 2012.CrossRefGoogle Scholar
  23. 23.
    Saulis, G., R. Lapė, R. Pranevičiūtė, and D. Mickevičius. Changes of the solution pH due to exposure by high-voltage electric pulses. Bioelectrochemistry 67:101–108, 2005.CrossRefGoogle Scholar
  24. 24.
    Stapulionis, R. Electric pulse-induced precipitation of biological macromolecules in electroporation. Bioelectrochem. Bioenerg. 48:1–6, 1999.CrossRefGoogle Scholar
  25. 25.
    Tamiya, E., Y. Nakajima, H. Kamioka, M. Suzuki, and I. Karube. DNA cleavage based on high voltage electric pulse. FEBS Lett. 234:357–361, 1988.CrossRefGoogle Scholar
  26. 26.
    Touchard, E., M. Berdugo, P. Bigey, M. El Sanharawi, M. Savoldelli, M.-C. Naud, J.-C. Jeanny, and F. Behar-Cohen. Suprachoroidal electrotransfer: a nonviral gene delivery method to transfect the choroid and the retina without detaching the retina. Mol. Therapy 20:1559–1570, 2012.CrossRefGoogle Scholar
  27. 27.
    Venslauskas, M. S., and S. Šatkauskas. Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. Eur. Biophys. J. 44:1–13, 2015.CrossRefGoogle Scholar
  28. 28.
    Wolff, J. A., and V. Budker. The mechanism of naked DNA uptake and expression. Adv. Genet. 54:1–20, 2015.Google Scholar
  29. 29.
    Wu, M., and F. Yuan. Membrane binding of plasmid DNA and endocytic pathways are involved in electrotransfection of mammalian cells. PLoS One 6:e20923, 2011.CrossRefGoogle Scholar
  30. 30.
    Xu, Z. P., T. L. Walker, K.-L. Liu, H. M. Cooper, G. Q. M. Lu, and P. F. Bartlett. Layered double hydroxide nanoparticles as cellular delivery vectors of supercoiled plasmid DNA. Int. J. Nanomed. 2:163–174, 2007.Google Scholar
  31. 31.
    Zhou, R., J. E. Norton, N. Zhang, and D. A. Dean. Electroporation-mediated transfer of plasmids to the lung results in reduced TLR9 signaling and inflammation. Gene Ther. 14:775–780, 2007.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Chun-Chi Chang
    • 1
  • Mao Mao
    • 1
  • Yang Liu
    • 1
    • 2
    • 3
  • Mina Wu
    • 1
  • Tuan Vo-Dinh
    • 1
    • 2
    • 3
  • Fan Yuan
    • 1
    • 3
  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  2. 2.Department of ChemistryDuke UniversityDurhamUSA
  3. 3.Fitzpatrick Institute for Photonics, Duke UniversityDurhamUSA

Personalised recommendations