Cellular and Molecular Bioengineering

, Volume 9, Issue 4, pp 479–495 | Cite as

Adhesive Peptide Sequences Regulate Valve Interstitial Cell Adhesion, Phenotype and Extracellular Matrix Deposition

Article

Abstract

Knowledge of how extracellular matrix (ECM) binding impacts valve interstitial cells (VICs) is critical not only to better understanding the etiology of valvular diseases but also to constructing living valve substitutes that can grow and remodel. Use of ECM-mimicking adhesive peptides with specific affinity to different receptors provides insights into adhesion-mediated cell signaling and downstream outcomes. Expression of adhesion receptors by VICs was assessed by flow cytometry and used to guide the choice of peptides studied. The peptide RGDS with affinity to multiple integrin receptors, and specific receptor-targeting peptides DGEA (integrin α 2 β 1), YIGSR (67 kDa laminin/elastin receptor; 67LR), and VAPG (67LR) were incorporated into hydrogels to investigate their effects on VICs. DGEA, YIGSR, and VAPG alone were insufficient to induce stable VIC adhesion. As a result, these peptides were studied in combination with 1 mM RGDS. For VICs cultured on two-dimensional hydrogel surfaces, YIGSR and VAPG down-regulated the expression of smooth muscle α-actin (myofibroblast activation marker); DGEA promoted VIC adhesion and VIC-mediated ECM deposition and inhibited the activity of alkaline phosphatase (osteogenic differentiation marker). Further, YIGSR and DGEA in combination promoted ECM deposition while inhibiting both myofibroblastic and osteogenic differentiation. However, VICs behaved differently to adhesive ligands when cultured within three-dimensional hydrogels, with most VICs assuming a healthy, quiescent phenotype under all peptide conditions tested. DGEA promoted ECM deposition by VICs within hydrogels. Overall, we demonstrate that the presentation of defined peptides targeting specific adhesion receptors can be used to regulate VIC adhesion, phenotype and ECM synthesis.

Keywords

VICs ECM remodeling Tissue engineering Scaffolds PEG hydrogels 

Abbreviations

VICs

Valve interstitial cells

ECM

Extracellular matrix

67LR

67 kDa laminin/elastin receptor

Αsma

Smooth muscle α-actin

ALP

Alkaline phosphatase

2D

Two-dimensional

3D

Three-dimensional

PEG

Poly(ethylene glycol)

PEGDA

Poly(ethylene glycol) diacrylate

MMP

Matrix metalloproteinase

HMSCs

Human mesenchymal stem cells

PQ

GGGPQGIWGQGK

Notes

Acknowledgements

This research was funded by NIH R01 HL107765. Special thanks to Daniel S. Puperi for cell isolation, Maude Cuchiara and Jennifer Connell for editorial assistance.

Conflicts of Interest

Yan Wu, K. Jane Grande-Allen and Jennifer L. West declare that they have no conflict of interest.

Human and Animal Rights Statement

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Supplementary material

12195_2016_451_MOESM1_ESM.docx (6.6 mb)
Supplementary material 1 (DOCX 6758 kb)

References

  1. 1.
    Abe, T., Y. Abe, Y. Aida, Y. Hara, and K. Maeda. Extracellular matrix regulates induction of alkaline phosphatase expression by ascorbic acid in human fibroblasts. J. Cell. Physiol. 189:144–151, 2001.CrossRefGoogle Scholar
  2. 2.
    Anderson, J. M., M. Kushwaha, A. Tambralli, S. L. Bellis, R. P. Camata, and H.-W. Jun. Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules 10:2935–2944, 2009.CrossRefGoogle Scholar
  3. 3.
    Anderson, J. M., J. B. Vines, J. L. Patterson, H. Chen, A. Javed, and H.-W. Jun. Osteogenic differentiation of human mesenchymal stem cells synergistically enhanced by biomimetic peptide amphiphiles combined with conditioned medium. Acta Biomater. 7:675–682, 2011.CrossRefGoogle Scholar
  4. 4.
    Barth, M., H. Schumacher, C. Kuhn, P. Akhyari, A. Lichtenberg, and W. W. Franke. Cordial connections: molecular ensembles and structures of adhering junctions connecting interstitial cells of cardiac valves in situ and in cell culture. Cell Tissue Res. 337:63–77, 2009.CrossRefGoogle Scholar
  5. 5.
    Benton, J. A., B. D. Fairbanks, and K. S. Anseth. Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials 30:6593–6603, 2009.CrossRefGoogle Scholar
  6. 6.
    Chen, J.-H., and C. A. Simmons. Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ. Res. 108:1510–1524, 2011.CrossRefGoogle Scholar
  7. 7.
    Christ, K. V., K. B. Williamson, K. S. Masters, and K. T. Turner. Measurement of single-cell adhesion strength using a microfluidic assay. Biomed. Microdevices 12:443–455, 2010.CrossRefGoogle Scholar
  8. 8.
    Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712, 2001.CrossRefGoogle Scholar
  9. 9.
    Cushing, M. C., J.-T. Liao, M. P. Jaeggli, and K. S. Anseth. Material-based regulation of the myofibroblast phenotype. Biomaterials 28:3378–3387, 2007.CrossRefGoogle Scholar
  10. 10.
    DeLong, S. A., J. J. Moon, and J. L. West. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26:3227–3234, 2005.CrossRefGoogle Scholar
  11. 11.
    Duan, B., L. A. Hockaday, E. Kapetanovic, K. H. Kang, and J. T. Butcher. Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels. Acta Biomater. 9:7640–7650, 2013.CrossRefGoogle Scholar
  12. 12.
    Frith, J. E., R. J. Mills, J. E. Hudson, and J. J. Cooper-White. Tailored integrin-extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cells Dev. 21:2442–2456, 2012.CrossRefGoogle Scholar
  13. 13.
    Gandaglia, A., A. Bagno, F. Naso, M. Spina, and G. Gerosa. Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations. Eur. J. Cardiothorac. Surg. 39:523–531, 2011.CrossRefGoogle Scholar
  14. 14.
    Gandavarapu, N. R., D. L. Alge, and K. S. Anseth. Osteogenic differentiation of human mesenchymal stem cells on α5 integrin binding peptide hydrogels is dependent on substrate elasticity. Biomater. Sci. 2:352–361, 2014.CrossRefGoogle Scholar
  15. 15.
    Giancotti, F. G., and E. Ruoslahti. Integrin Signaling. Science 285:1028–1032, 1999.CrossRefGoogle Scholar
  16. 16.
    Gobin, A. S., and J. L. West. Val-ala-pro-gly, an elastin-derived non-integrin ligand: smooth muscle cell adhesion and specificity. J. Biomed. Mater. Res. A 67:255–259, 2003.CrossRefGoogle Scholar
  17. 17.
    Gould, S. T., and K. S. Anseth. Role of cell–matrix interactions on VIC phenotype and tissue deposition in 3D PEG hydrogels. Med: J. Tissue Eng. Regen, 2013.Google Scholar
  18. 18.
    Gould, S. T., N. J. Darling, and K. S. Anseth. Small peptide functionalized thiol-ene hydrogels as culture substrates for understanding valvular interstitial cell activation and de novo tissue deposition. Acta Biomater. 8:3201–3209, 2012.CrossRefGoogle Scholar
  19. 19.
    Graf, J., et al. A pentapeptide from the laminin B1 chain mediates cell adhesion and binds the 67 000 laminin receptor. Biochemistry 26:6896–6900, 1987.CrossRefGoogle Scholar
  20. 20.
    Gregory, T. R. Nucleotypic effects without nuclei: genome size and erythrocyte size in mammals. Genome 43:895–901, 2000.CrossRefGoogle Scholar
  21. 21.
    Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7:211–224, 2006.CrossRefGoogle Scholar
  22. 22.
    Gu, X., and K. S. Masters. Regulation of valvular interstitial cell calcification by adhesive peptide sequences. J. Biomed. Mater. Res. A 93:1620–1630, 2010.Google Scholar
  23. 23.
    Harbers, G. M., and K. E. Healy. The effect of ligand type and density on osteoblast adhesion, proliferation, and matrix mineralization. J. Biomed. Mater. Res. A 75:855–869, 2005.CrossRefGoogle Scholar
  24. 24.
    Heino, J. The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol. 19:319–323, 2000.CrossRefGoogle Scholar
  25. 25.
    Hern, D. L., and J. A. Hubbell. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39:266–276, 1998.CrossRefGoogle Scholar
  26. 26.
    Hersel, U., C. Dahmen, and H. Kessler. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415, 2003.CrossRefGoogle Scholar
  27. 27.
    Hinek, A., M. Rabinovitch, F. Keeley, Y. Okamura-Oho, and J. Callahan. The 67-kD elastin/laminin-binding protein is related to an enzymatically inactive, alternatively spliced form of β-galactosidase. J. Clin. Invest. 91:1198–1205, 1993.CrossRefGoogle Scholar
  28. 28.
    Ivaska, J., H. Reunanen, J. Westermarck, L. Koivisto, V. M. Kähäri, and J. Heino. Integrin alpha2beta1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the alpha2 cytoplasmic tail. J. Cell Biol. 147:401–416, 1999.CrossRefGoogle Scholar
  29. 29.
    Kang, L. H., P. A. Armstrong, L. J. Lee, B. Duan, K. H. Kang, and J. T. Butcher. Optimizing photo-encapsulation viability of heart valve cell types in 3D printable composite hydrogels. Eng: Ann. Biomed, 2016.Google Scholar
  30. 30.
    Kloxin, A. M., J. A. Benton, and K. S. Anseth. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31:1–8, 2010.CrossRefGoogle Scholar
  31. 31.
    Latif, N., P. Sarathchandra, P. M. Taylor, J. Antoniw, and M. H. Yacoub. Molecules mediating cell-ECM and cell-cell communication in human heart valves. Cell Biochem. Biophys. 43:275–287, 2005.CrossRefGoogle Scholar
  32. 32.
    Latif, N., P. Sarathchandra, P. M. Taylor, J. Antoniw, and M. H. Yacoub. Localization and pattern of expression of extracellular matrix components in human heart valves. J. Heart Valve Dis. 14:218–227, 2005.Google Scholar
  33. 33.
    Lian, J. B., and G. S. Stein. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit. Rev. Oral Biol. Med. 3:269–305, 1992.Google Scholar
  34. 34.
    Liu, A. C., V. R. Joag, and A. I. Gotlieb. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 171:1407–1418, 2007.CrossRefGoogle Scholar
  35. 35.
    Margadant, C., H. N. Monsuur, J. C. Norman, and A. Sonnenberg. Mechanisms of integrin activation and trafficking. Curr. Opin. Cell Biol. 23:607–614, 2011.CrossRefGoogle Scholar
  36. 36.
    Mavrilas, D., and Y. Missirlis. An approach to the optimization of preparation of bioprosthetic heart valves. J. Biomech. 24:331–339, 1991.CrossRefGoogle Scholar
  37. 37.
    May-Newman, K., C. Lam, and F. C. P. Yin. A hyperelastic constitutive law for aortic valve tissue. J. Biomech. Eng. 131:081009, 2009.CrossRefGoogle Scholar
  38. 38.
    Monzack, E. L., X. Gu, and K. S. Masters. Efficacy of simvastatin treatment of valvular interstitial cells varies with the extracellular environment. Arterioscler. Thromb. Vasc. Biol. 29:246–253, 2009.CrossRefGoogle Scholar
  39. 39.
    Moon, J. J., et al. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31:3840–3847, 2010.CrossRefGoogle Scholar
  40. 40.
    Munoz-Pinto, D. J., A. C. Jimenez-Vergara, L. M. Gelves, R. E. McMahon, V. Guiza-Arguello, and M. S. Hahn. Probing vocal fold fibroblast response to hyaluronan in 3D contexts. Biotechnol. Bioeng. 104:821–831, 2009.Google Scholar
  41. 41.
    Nelson, J., et al. The 67 kDa laminin receptor: structure, function and role in disease. Biosci. Rep. 28:33–48, 2008.CrossRefGoogle Scholar
  42. 42.
    Pho, M., W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch. Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am. J. Physiol. 294:H1767–H1778, 2008.Google Scholar
  43. 43.
    Quinlan, A. M. T., and K. L. Billiar. Investigating the role of substrate stiffness in the persistence of valvular interstitial cell activation. J. Biomed. Mater. Res. A 100:2474–2482, 2012.Google Scholar
  44. 44.
    Rabkin-Aikawa, E., M. Farber, M. Aikawa, and F. J. Schoen. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J. Heart Valve Dis. 13:841–847, 2004.Google Scholar
  45. 45.
    Rodriguez, K. J., and K. S. Masters. Regulation of valvular interstitial cell calcification by components of the extracellular matrix. J. Biomed. Mater. Res. A 90:1043–1053, 2009.CrossRefGoogle Scholar
  46. 46.
    Rodriguez, K. J., L. M. Piechura, and K. S. Masters. Regulation of valvular interstitial cell phenotype and function by hyaluronic acid in 2-D and 3-D culture environments. Matrix Biol. 30:70–82, 2011.CrossRefGoogle Scholar
  47. 47.
    Roger, V. L., et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 125:e2–e220, 2012.CrossRefGoogle Scholar
  48. 48.
    Schenke-Layland, K. I. Riemann, F. Opitz, K. König, K.J. Halbhuber, and U.A. Stock. Comparative study of cellular and extracellular matrix composition of native and tissue engineered heart valves. Matrix Biol. 23:113–125, 2004.CrossRefGoogle Scholar
  49. 49.
    Schoen, F. J. Heart valve tissue engineering: quo vadis? Curr. Opin. Biotechnol. 22:698–705, 2011.CrossRefGoogle Scholar
  50. 50.
    Stephens, E. H., J. L. Carroll, and K. J. Grande-Allen. The use of collagenase III for the isolation of porcine aortic valvular interstitial cells: rationale and optimization. J. Heart Valve Dis. 16:175–183, 2007.Google Scholar
  51. 51.
    Stephens, E. H., C. A. Durst, J. C. Swanson, K. J. Grande-Allen, N. B. Ingels, and D. C. Miller. Functional coupling of valvular interstitial cells and collagen via α2β1 integrins in the mitral leaflet. Cell. Mol. Bioeng. 3:428–437, 2010.CrossRefGoogle Scholar
  52. 52.
    Taylor, P. M., P. Batten, N. J. Brand, P. S. Thomas, and M. H. Yacoub. The cardiac valve interstitial cell. Int. J. Biochem. Cell Biol. 35:113–118, 2003.CrossRefGoogle Scholar
  53. 53.
    Vesely, I., and D. Boughner. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements. J. Biomech. 22:655–671, 1989.CrossRefGoogle Scholar
  54. 54.
    Vesely, I., and R. Noseworthy. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J. Biomech. 25:101–113, 1992.CrossRefGoogle Scholar
  55. 55.
    Wang, H., S. M. Haeger, A. M. Kloxin, L. A. Leinwand, and K. S. Anseth. Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. PLoS ONE 7:e39969, 2012.CrossRefGoogle Scholar
  56. 56.
    Weind, K. L., C. G. Ellis, and D. R. Boughner. Aortic valve cusp vessel density: Relationship with tissue thickness. J. Thorac. Cardiovasc. Surg. 123:333–340, 2002.CrossRefGoogle Scholar
  57. 57.
    West, J. L., and J. A. Hubbell. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32:241–244, 1999.CrossRefGoogle Scholar
  58. 58.
    Wu, Y., D. S. Puperi, K. J. Grande-Allen, and J. L. West. Ascorbic acid promotes extracellular matrix deposition while preserving valve interstitial cell quiescence within 3D hydrogel scaffolds. Med: J. Tissue Eng. Regen, 2015.Google Scholar
  59. 59.
    Zustiak, S. P., R. Durbal, and J. B. Leach. Influence of cell-adhesive peptide ligands on poly(ethylene glycol) hydrogel physical, mechanical and transport properties. Acta Biomater. 6:3404–3414, 2010.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Yan Wu
    • 1
  • K. Jane Grande-Allen
    • 2
  • Jennifer L. West
    • 1
  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  2. 2.Department of BioengineeringRice UniversityHoustonUSA

Personalised recommendations