Advertisement

Cellular and Molecular Bioengineering

, Volume 9, Issue 3, pp 368–381 | Cite as

Mechanism of Enhanced Cellular Uptake and Cytosolic Retention of MK2 Inhibitory Peptide Nano-polyplexes

  • Kameron V. Kilchrist
  • Brian C. Evans
  • Colleen M. Brophy
  • Craig L. DuvallEmail author
Article

Abstract

Electrostatic complexation of a cationic MAPKAP kinase 2 inhibitory (MK2i) peptide with the anionic, pH-responsive polymer poly(propylacrylic acid) (PPAA) yields MK2i nano-polyplexes (MK2i-NPs) that significantly increase peptide uptake and intracellular retention. This study focused on elucidating the mechanism of MK2i-NP cellular uptake and intracellular trafficking in vascular smooth muscle cells. Small molecule inhibition of various endocytic pathways showed that MK2i-NP cellular uptake involves both macropinocytosis and clathrin mediated endocytosis, whereas the free peptide exclusively utilizes clathrin mediated endocytosis for cell entry. Scanning electron microscopy studies revealed that MK2i-NPs, but not free MK2i peptide, induce cellular membrane ruffling consistent with macropinocytosis. TEM confirmed that MK2i-NPs induce macropinosome formation and achieve MK2i endo-lysosomal escape and cytosolic delivery. Finally, a novel technique based on recruitment of Galectin-8-YFP was utilized to demonstrate that MK2i-NPs cause endosomal disruption within 30 min of uptake. These new insights on the relationship between NP physicochemical properties and cellular uptake and trafficking can potentially be applied to further optimize the MK2i-NP system and more broadly toward the rational engineering of nano-scale constructs for the intracellular delivery of biologic drugs.

Keywords

Drug delivery Nanoparticle Endosome escape pH-responsive polymer Macropinocytosis Vascular therapeutic 

Notes

Acknowledgments

We thank Dr. Felix Randow and Dr. Bob Weinburg for kind gifts of plasmids via AddGene.com. We thank Dr. Janice Williams for imaging support and electron microscopy expertise. Confocal imaging, transmission electron microscopy, and scanning electron microscopy were performed in part through the use of the Vanderbilt University Medical Center Cell Imaging Shared Resource (supported by NIH Grants CA68485, DK20593, DK58404, DK59637 and EY08126). Dynamic light scattering was conducted at the Vanderbilt Institute of Nanoscale Sciences and Engineering. This work was supported by the American Heart Association (11SDG4890030), National Institutes of Health/National Heart, Lung, and Blood Institute (R21 HL110056 and R01 HL122347), and a National Science Foundation Graduate Research Fellowship to K.V.K. (0909667 and 1445197).

Conflict of Interest

KVK, BCE, CMB, and CLD report grant support from the National Institutes of Health and the American Heart Association; KVK additionally reports grant support from National Science Foundation Graduate Research Fellowship Program. During the conduct of the study, authors disclose non-financial support from Moerae Matrix, Inc., outside the submitted work. CMB is chief scientific officer and a shareholder of Moerae Matrix, Inc. BCE, CMB, and CLD are inventors listed on patent PCT/US2014/033873, licensed by Moerae Matrix, Inc. MK2i is known commercially known as MMI-0100 and is being developed by Moerae Matrix, Inc. for clinical use (ClinicalTrials.gov Identifier: NCT02515396).

Ethical Standards

No human or animal studies were carried out by the authors for the completion of this work.

Supplementary material

Supplementary material 1 (MP4 27623 kb)

12195_2016_446_MOESM2_ESM.pdf (508 kb)
Supplementary material 2 (PDF 509 kb)

References

  1. 1.
    Barondes, S. H., D. N. Cooper, M. A. Gitt, and H. Leffler. Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem. 269:20807–20810, 1994.Google Scholar
  2. 2.
    Behr, J. P. The proton sponge: a trick to enter cells the viruses did not exploit. CHIMIA Int. J. Chem. 51:34–36, 1997.Google Scholar
  3. 3.
    Berguig, G. Y., et al. Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate. Mol. Pharm. 9:3506–3514, 2012.CrossRefGoogle Scholar
  4. 4.
    Bernard, A., and D. J. Klionsky. Toward an understanding of autophagosome-lysosome fusion: the unsuspected role of ATG14. Autophagy 11:583–584, 2015.CrossRefGoogle Scholar
  5. 5.
    Bickel, P. E., and M. W. Freeman. Rabbit aortic smooth muscle cells express inducible macrophage scavenger receptor messenger RNA that is absent from endothelial cells. J. Clin. Invest 90:1450–1457, 1992.CrossRefGoogle Scholar
  6. 6.
    Borsello, T., et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9:1180–1186, 2003.CrossRefGoogle Scholar
  7. 7.
    Boussif, O., et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301, 1995.CrossRefGoogle Scholar
  8. 8.
    Boyle, K. B., and F. Randow. The role of “eat-me” signals and autophagy cargo receptors in innate immunity. Curr. Opin. Microbiol. 16:339–348, 2013.CrossRefGoogle Scholar
  9. 9.
    Brown, M. S., S. K. Basu, J. R. Falck, Y. K. Ho, and J. L. Goldstein. The scavenger cell pathway for lipoprotein degradation: Specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J. Supramol. Struct. 13:67–81, 1980.CrossRefGoogle Scholar
  10. 10.
    Brugnano, J., J. McMasters, and A. Panitch. Characterization of endocytic uptake of MK2-inhibitor peptides. J. Pept. Sci. 19:629–638, 2013.CrossRefGoogle Scholar
  11. 11.
    Canton, J., D. Neculai, and S. Grinstein. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13:621–634, 2013.CrossRefGoogle Scholar
  12. 12.
    Convertine, A. J., D. S. W. Benoit, C. L. Duvall, A. S. Hoffman, and P. S. Stayton. Development of a novel endosomolytic diblock copolymer for siRNA delivery. J. Control. Release 133:221–229, 2009.CrossRefGoogle Scholar
  13. 13.
    Convertine, A. J., D. S. W. Benoit, C. L. Duvall, A. S. Hoffman, and P. S. Stayton. Development of a novel endosomolytic diblock copolymer for siRNA delivery. J. Control. Release 133:221–229, 2009.CrossRefGoogle Scholar
  14. 14.
    Copolovici, D. M., K. Langel, E. Eriste, and Ü. Langel. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 8:1972–1994, 2014.CrossRefGoogle Scholar
  15. 15.
    De Smedt, S. C., J. Demeester, and W. E. Hennink. Cationic polymer based gene delivery systems. Pharm. Res. 17:113–126, 2000.CrossRefGoogle Scholar
  16. 16.
    Deshayes, S., M. C. Morris, G. Divita, and F. Heitz. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell. Mol. Life Sci 62:1839–1849, 2005.CrossRefGoogle Scholar
  17. 17.
    Duvall, C. L., A. J. Convertine, D. S. W. Benoit, A. S. Hoffman, and P. S. Stayton. Intracellular delivery of a proapoptotic peptide via conjugation to a RAFT synthesized endosomolytic polymer. Mol. Pharm. 7:468–476, 2010.CrossRefGoogle Scholar
  18. 18.
    Evans, B. C., K. M. Hocking, K. V. Kilchrist, E. S. Wise, C. M. Brophy, and C. L. Duvall. Endosomolytic nano-polyplex platform technology for cytosolic peptide delivery to inhibit pathological vasoconstriction. ACS Nano. 9:5893–5907, 2015.CrossRefGoogle Scholar
  19. 19.
    Evans, B. C., et al. MK2 inhibitory peptide delivered in nanopolyplexes prevents vascular graft intimal hyperplasia. Sci Transl Med 7:291ra95, 2015.CrossRefGoogle Scholar
  20. 20.
    Falcone, S., E. Cocucci, P. Podini, T. Kirchhausen, E. Clementi, and J. Meldolesi. Macropinocytosis: regulated coordination of endocytic and exocytic membrane traffic events. J. Cell Sci. 119:4758–4769, 2006.CrossRefGoogle Scholar
  21. 21.
    Felgner, J. H., et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269:2550–2561, 1994.Google Scholar
  22. 22.
    Flynn, C. R., et al. Internalization and intracellular trafficking of a PTD-conjugated anti-fibrotic peptide, AZX100, in human dermal keloid fibroblasts. J. Pharm. Sci. 99:3100–3121, 2010.CrossRefGoogle Scholar
  23. 23.
    Furuta, N., and A. Amano. SNARE mediates autophagosome–lysosome fusion. J. Oral Biosci. 54:83–85, 2012.CrossRefGoogle Scholar
  24. 24.
    Gump, J. M., and S. F. Dowdy. TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol. Med. 13:443–448, 2007.CrossRefGoogle Scholar
  25. 25.
    Hayess, K., and R. Benndorf. Effect of protein kinase inhibitors on activity of mammalian small heat-shock protein (HSP25) kinase. Biochem. Pharmacol. 53:1239–1247, 1997.CrossRefGoogle Scholar
  26. 26.
    Hughes, L. D., R. J. Rawle, and S. G. Boxer. Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers. PLoS One 9:e87649, 2014.CrossRefGoogle Scholar
  27. 27.
    Kaplan, I. M., J. S. Wadia, and S. F. Dowdy. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J. Control. Release 102:247–253, 2005.CrossRefGoogle Scholar
  28. 28.
    Khalil, I. A., K. Kogure, H. Akita, and H. Harashima. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58:32–45, 2006.CrossRefGoogle Scholar
  29. 29.
    Knighton, D. R., J. H. Zheng, L. F. Ten Eyck, N. H. Xuong, S. S. Taylor, and J. M. Sowadski. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253:414–420, 1991.CrossRefGoogle Scholar
  30. 30.
    Kotlyarov, A., et al. Distinct cellular functions of MK2. Mol. Cell. Biol. 22:4827–4835, 2002.CrossRefGoogle Scholar
  31. 31.
    Li, H., M. Freeman, and P. Libby. Regulation of smooth muscle cell scavenger receptor expression in vivo by atherogenic diets and in vitro by cytokines. J. Clin. Invest. 1995. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC295387/
  32. 32.
    Lopes, L. B., C. Flynn, P. Komalavilas, A. Panitch, C. M. Brophy, and B. L. Seal. Inhibition of HSP27 phosphorylation by a cell-permeant MAPKAP Kinase 2 inhibitor. Biochem. Biophys. Res. Commun. 382:535–539, 2009.CrossRefGoogle Scholar
  33. 33.
    Lopes, L. B., et al. Cell permeant peptide analogues of the small heat shock protein, HSP20, reduce TGF-β1-induced CTGF expression in keloid fibroblasts. J. Invest. Dermatol. 129:590–598, 2008. http://www.nature.com/doifinder/10.1038/jid.2008.264
  34. 34.
    Meng, W., et al. Structure of mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 suggests a bifunctional switch that couples kinase activation with nuclear export. J. Biol. Chem. 277:37401–37405, 2002.CrossRefGoogle Scholar
  35. 35.
    Mercer, J., and A. Helenius. Virus entry by macropinocytosis. Nat. Cell Biol. 11:510–520, 2009.CrossRefGoogle Scholar
  36. 36.
    Nakase, I., N. B. Kobayashi, T. Takatani-Nakase, and T. Yoshida. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci. Rep. 5:10300, 2015.CrossRefGoogle Scholar
  37. 37.
    Richard, J. P., et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278:585–590, 2003.CrossRefGoogle Scholar
  38. 38.
    Shibutani, S. T., and T. Yoshimori. Autophagosome formation in response to intracellular bacterial invasion. Cell. Microbiol. 16:1619–1626, 2014.CrossRefGoogle Scholar
  39. 39.
    Sorkin, A., and M. von Zastrow. Signal transduction and endocytosis: close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 3:600–614, 2002.CrossRefGoogle Scholar
  40. 40.
    Stewart, S. A., et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9:493–501, 2003.CrossRefGoogle Scholar
  41. 41.
    Thurston, T. L. M., M. P. Wandel, N. von Muhlinen, A. Foeglein, and F. Randow. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482:414–418, 2012.CrossRefGoogle Scholar
  42. 42.
    Varkouhi, A. K., M. Scholte, G. Storm, and H. J. Haisma. Endosomal escape pathways for delivery of biologicals. J. Control. Release 151:220–228, 2011.CrossRefGoogle Scholar
  43. 43.
    Verdine, G. L., and G. J. Hilinski. Stapled peptides for intracellular drug targets. Methods Enzymol. 503:3–33, 2012.CrossRefGoogle Scholar
  44. 44.
    Wittrup, A., et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 33:870–876, 2015.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Kameron V. Kilchrist
    • 1
  • Brian C. Evans
    • 2
  • Colleen M. Brophy
    • 2
    • 3
  • Craig L. Duvall
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.Division of Vascular Surgery, Department of SurgeryVanderbilt University Medical CenterNashvilleUSA
  3. 3.Veterans Affairs Medical CenterVA Tennessee Valley Healthcare SystemNashvilleUSA

Personalised recommendations