Advertisement

Cellular and Molecular Bioengineering

, Volume 9, Issue 1, pp 73–84 | Cite as

Physical and Chemical Signals That Promote Vascularization of Capillary-Scale Channels

  • Raleigh M. Linville
  • Nelson F. Boland
  • Gil Covarrubias
  • Gavrielle M. Price
  • Joe Tien
Article

Abstract

Proper vascularization remains critical to the clinical application of engineered tissues. To engineer microvessels in vitro, we and others have delivered endothelial cells through preformed channels into patterned extracellular matrix-based gels. This approach has been limited by the size of endothelial cells in suspension, and results in plugging of channels below ~30 µm in diameter. Here, we examine physical and chemical signals that can augment direct seeding, with the aim of rapidly vascularizing capillary-scale channels. By studying tapered microchannels in type I collagen gels under various conditions, we establish that stiff scaffolds, forward pressure, and elevated cyclic AMP levels promote endothelial stability and that reverse pressure promotes endothelial migration. We applied these results to uniform 20-µm-diameter channels and optimized the magnitudes of pressure, flow, and shear stress to best support endothelial migration and vascular stability. This vascularization strategy is able to form millimeter-long perfusable capillaries within 3 days. Our results indicate how to manipulate the physical and chemical environment to promote rapid vascularization of capillary-scale channels within type I collagen gels.

Keywords

Microvascular tissue engineering Collagen Endothelial cells Genipin Cyclic AMP Pressure 

Notes

Acknowledgments

We thank Cliff Brangwynne and Marina Feric for access to their pipette puller, and Aimal Khankhel for assistance with experiments. This work was supported by Boston University through a Dean’s Catalyst Award (J.T.), a Lutchen Fellowship (R.M.L.), and awards from the Undergraduate Research Opportunities Program (R.M.L., N.F.B., G.C.). R.M.L. thanks Mr. and Mrs. William Felder for support through a Summer Term Alumni Research Scholarship at Boston University.

Conflicts of interest

Raleigh M. Linville, Nelson F. Boland, Gil Covarrubias, Gavrielle M. Price, and Joe Tien declare that they have no conflict of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

References

  1. 1.
    Auger, F. A., L. Gibot, and D. Lacroix. The pivotal role of vascularization in tissue engineering. Annu. Rev. Biomed. Eng. 15:177–200, 2013.CrossRefGoogle Scholar
  2. 2.
    Badylak, S. F., D. Taylor, and K. Uygun. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13:27–53, 2011.CrossRefGoogle Scholar
  3. 3.
    Bogorad, M. I., J. DeStefano, J. Karlsson, A. D. Wong, S. Gerecht, and P. C. Searson. In vitro microvessel models. Lab Chip 15:4242–4255, 2015.CrossRefGoogle Scholar
  4. 4.
    Califano, J. P., and C. A. Reinhart-King. Exogenous and endogenous force regulation of endothelial cell behavior. J. Biomech. 43:79–86, 2010.CrossRefGoogle Scholar
  5. 5.
    Chan, K. L. S., A. H. Khankhel, R. L. Thompson, B. J. Coisman, K. H. K. Wong, J. G. Truslow, and J. Tien. Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability. J. Biomed. Mater. Res. A. 102:3186–3195, 2014.CrossRefGoogle Scholar
  6. 6.
    Chan, J. M., I. K. Zervantonakis, T. Rimchala, W. J. Polacheck, J. Whisler, and R. D. Kamm. Engineering of in vitro 3D capillary beds by self-directed angiogenic sprouting. PLoS ONE 7:e50582, 2012.CrossRefGoogle Scholar
  7. 7.
    Chrobak, K. M., D. R. Potter, and J. Tien. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71:185–196, 2006.CrossRefGoogle Scholar
  8. 8.
    Dewey, C. F., S. R. Bussolari, M. A. Gimbrone, and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–185, 1981.CrossRefGoogle Scholar
  9. 9.
    Galie, P. A., D. H. Nguyen, C. K. Choi, D. M. Cohen, P. A. Janmey, and C. S. Chen. Fluid shear stress threshold regulates angiogenic sprouting. Proc. Natl. Acad. Sci. USA 111:7968–7973, 2014.CrossRefGoogle Scholar
  10. 10.
    Hsu, P. P., S. Li, Y. S. Li, S. Usami, A. Ratcliffe, X. Wang, and S. Chien. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem. Biophys. Res. Commun. 285:751–759, 2001.CrossRefGoogle Scholar
  11. 11.
    Kim, S., H. Lee, M. Chung, and N. L. Jeon. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489–1500, 2013.CrossRefGoogle Scholar
  12. 12.
    Kiosses, W. B., N. H. McKee, and V. L. Kalnins. Evidence for the migration of aortic endothelial cells towards the heart. Arterioscler. Thromb. Vasc. Biol. 2891:2891–2896, 1997.CrossRefGoogle Scholar
  13. 13.
    Koike, N., D. Fukumura, O. Gralla, P. Au, J. S. Schechner, and R. K. Jain. Creation of long-lasting blood vessels. Nature 428:138–139, 2004.CrossRefGoogle Scholar
  14. 14.
    Leung, A. D., K. H. K. Wong, and J. Tien. Plasma expanders stabilize human microvessels in microfluidic scaffolds. J. Biomed. Mater. Res. A. 100:1815–1822, 2012.CrossRefGoogle Scholar
  15. 15.
    Levenberg, S., J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane, D. C. Darland, R. Marini, C. A. van Blitterswijk, R. C. Mulligan, P. A. D’Amore, and R. Langer. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23:879–884, 2005.CrossRefGoogle Scholar
  16. 16.
    Lovett, M., K. Lee, A. Edwards, and D. L. Kaplan. Vascularization strategies for tissue engineering. Tissue Eng. B. 15:353–370, 2009.CrossRefGoogle Scholar
  17. 17.
    Mancuso, M. R., R. Davis, S. M. Norberg, S. O’Brien, B. Sennino, T. Nakahara, V. J. Yao, T. Inai, P. Brooks, B. Freimark, D. R. Shalinsky, D. D. Hu-Lowe, and D. M. McDonald. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Invest. 116:2610–2621, 2006.CrossRefGoogle Scholar
  18. 18.
    Morgan, J. P., P. F. Delnero, Y. Zheng, S. S. Verbridge, J. Chen, M. Craven, N. W. Choi, A. Diaz-Santana, P. Kermani, B. Hempstead, J. A. Lopez, T. N. Corso, C. Fischbach, and A. D. Stroock. Formation of microvascular networks in vitro. Nat. Protoc. 8:1820–1836, 2013.CrossRefGoogle Scholar
  19. 19.
    Morin, K. T., A. O. Smith, G. E. Davis, and R. T. Tranquillo. Aligned human microvessels formed in 3D fibrin gel by constraint of gel contraction. Microvasc. Res. 90:12–22, 2013.CrossRefGoogle Scholar
  20. 20.
    Moya, M. L., Y. H. Hsu, A. P. Lee, C. C. Hughes, and S. C. George. In vitro perfused human capillary networks. Tissue Eng. C. 19:730–737, 2013.CrossRefGoogle Scholar
  21. 21.
    Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544, 2010.CrossRefGoogle Scholar
  22. 22.
    Ostrowski, M. A., N. F. Huang, T. W. Walker, T. Verwijlen, C. Poplawski, A. S. Khoo, J. P. Cooke, G. G. Fuller, and A. R. Dunn. Microvascular endothelial cells migrate upstream and align against the shear stress field created by impinging flow. Biophys. J. 106:366–374, 2014.CrossRefGoogle Scholar
  23. 23.
    Ott, H. C., B. Clippinger, C. Conrad, C. Schuetz, I. Pomerantseva, L. Ikonomou, D. Kotton, and J. P. Vacanti. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16:927–933, 2010.CrossRefGoogle Scholar
  24. 24.
    Petersen, T. H., E. A. Calle, L. Zhao, E. J. Lee, L. Gui, M. B. Raredon, K. Gavrilov, T. Yi, Z. W. Zhuang, C. Breuer, E. Herzog, and L. E. Niklason. Tissue-engineered lungs for in vivo implantation. Science 329:538–541, 2010.CrossRefGoogle Scholar
  25. 25.
    Pettersson, A., J. A. Nagy, L. F. Brown, C. Sundberg, E. Morgan, S. Jungles, R. Carter, J. E. Krieger, E. J. Manseau, V. S. Harvey, I. A. Eckelhoefer, D. Feng, A. M. Dvorak, R. C. Mulligan, and H. F. Dvorak. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab. Invest. 80:99–115, 2000.CrossRefGoogle Scholar
  26. 26.
    Price, G. M., K. M. Chrobak, and J. Tien. Effect of cyclic AMP on barrier function of human lymphatic microvascular tubes. Microvasc. Res. 76:46–51, 2008.CrossRefGoogle Scholar
  27. 27.
    Price, G. M., K. H. K. Wong, J. G. Truslow, A. D. Leung, C. Acharya, and J. Tien. Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31:6182–6189, 2010.CrossRefGoogle Scholar
  28. 28.
    Ren, X., P. T. Moser, S. E. Gilpin, T. Okamoto, T. Wu, L. F. Tapias, F. E. Mercier, L. Xiong, R. Ghawi, D. T. Scadden, D. J. Mathisen, and H. C. Ott. Engineering pulmonary vasculature in decellularized rat and human lungs. Nat. Biotechnol. 33:1097–1102, 2015.CrossRefGoogle Scholar
  29. 29.
    Scarritt, M. E., N. C. Pashos, and B. A. Bunnell. A review of cellularization strategies for tissue engineering of whole organs. Front. Bioeng. Biotechnol. 3:43, 2015.CrossRefGoogle Scholar
  30. 30.
    Tang, M. D., A. P. Golden, and J. Tien. Molding of three-dimensional microstructures of gels. J. Am. Chem. Soc. 125:12988–12989, 2003.CrossRefGoogle Scholar
  31. 31.
    Teichmann, J., A. Morgenstern, J. Seebach, H. J. Schnittler, C. Werner, and T. Pompe. The control of endothelial cell adhesion and migration by shear stress and matrix-substrate anchorage. Biomaterials 33:1959–1969, 2012.CrossRefGoogle Scholar
  32. 32.
    Truslow, J. G., G. M. Price, and J. Tien. Computational design of drainage systems for vascularized scaffolds. Biomaterials 30:4435–4443, 2009.CrossRefGoogle Scholar
  33. 33.
    Vickerman, V., and R. D. Kamm. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell–matrix and cell–cell junctions. Integr. Biol. 4:863–874, 2012.CrossRefGoogle Scholar
  34. 34.
    Whisler, J. A., M. B. Chen, and R. D. Kamm. Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng. C. 20:543–552, 2014.CrossRefGoogle Scholar
  35. 35.
    Wong, K. H. K., J. M. Chan, R. D. Kamm, and J. Tien. Microfluidic models of vascular functions. Annu. Rev. Biomed. Eng. 14:205–230, 2012.CrossRefGoogle Scholar
  36. 36.
    Wong, K. H. K., J. G. Truslow, A. H. Khankhel, K. L. S. Chan, and J. Tien. Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. J. Biomed. Mater. Res. A. 101:2181–2190, 2013.CrossRefGoogle Scholar
  37. 37.
    Wong, K. H. K., J. G. Truslow, A. H. Khankhel, and J. Tien. Biophysical mechanisms that govern the vascularization of microfluidic scaffolds. In: vascularization, edited by E. M. Brey. Boca Raton: CRC Press, 2014, pp. 109–124.Google Scholar
  38. 38.
    Wong, K. H. K., J. G. Truslow, and J. Tien. The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31:4706–4714, 2010.CrossRefGoogle Scholar
  39. 39.
    Yevick, H. G., G. Duclos, I. Bonnet, and P. Silberzan. Architecture and migration of an epithelium on a cylindrical wire. Proc. Natl. Acad. Sci. USA 112:5944–5949, 2015.CrossRefGoogle Scholar
  40. 40.
    Zheng, Y., J. Chen, M. Craven, N. W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J. A. Lopez, and A. D. Stroock. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. USA 109:9342–9347, 2012.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Raleigh M. Linville
    • 1
  • Nelson F. Boland
    • 1
  • Gil Covarrubias
    • 1
  • Gavrielle M. Price
    • 1
  • Joe Tien
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringBoston UniversityBostonUSA
  2. 2.Division of Materials Science and EngineeringBoston UniversityBrooklineUSA

Personalised recommendations