Advertisement

Cellular and Molecular Bioengineering

, Volume 8, Issue 3, pp 496–506 | Cite as

Pancreatic Epithelial Cells Form Islet-Like Clusters in the Absence of Directed Migration

  • Steven J. Holfinger
  • James W. Reinhardt
  • Rashmeet Reen
  • Kevin M. Schultz
  • Kevin M. Passino
  • William E. Ackerman
  • Douglas A. Kniss
  • Leonard M. Sander
  • Daniel Gallego-Perez
  • Keith J. GoochEmail author
Article

Abstract

The endocrine differentiation of pancreatic ductal epithelial cells is dependent upon their transition from a two-dimensional monolayer to three-dimensional islet-like clusters. Although clustering of these cells is commonly observed in vitro, it is not yet known whether clustering results from long-range signaling (e.g., chemotaxis) or short-range interactions (e.g., differential adhesion). To determine the mechanism behind clustering, we used experimental and computational modeling to determine the individual contributions of long-range and short-range interactions. Experimentally, the migration of PANC-1 cells on tissue culture treated plastic was tracked by time-lapse microscopy with or without a central cluster of cells that could act as a concentrated source of some long-range signal. Cell migration data was analyzed in terms of distance, number of steps, and migration rate in each direction, as well as migration rate as a function of distance from the cluster. Results did not indicate directed migration toward a central cluster (p > 0.05). Computationally, an agent-based model was used to demonstrate the plausibility of clustering by short-range interactions only. In the presence of random cell migration, this model showed that a high, but not maximal, cell–cell adhesion probability and minimal cell–substrate adhesion probability supported the greatest islet-like cluster formation.

Keywords

Diabetes Islet cells Differential adhesion Agent-based modeling Time-lapse microscopy 

Notes

Acknowledgments

This work was supported by National Science Foundation Grants NSF-CMMI (0928739 and 1334757).

Conflict of interest

Mr. Holfinger and Drs. Reinhardt, Reen, Schultz, Passino, Ackerman, Kniss, Sander, Gallego-Perez, and Gooch have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Supplementary material

Supplementary material 1 (MP4 798 kb)

12195_2015_396_MOESM2_ESM.avi (6.5 mb)
Supplementary material 2 (AVI 6622 kb)
12195_2015_396_MOESM3_ESM.avi (6.6 mb)
Supplementary material 3 (AVI 6720 kb)

Supplementary material 4 (MP4 847 kb)

Supplementary material 5 (AVI 5452 kb)

12195_2015_396_MOESM6_ESM.docx (3.5 mb)
Supplementary material 6 (DOCX 3543 kb)

References

  1. 1.
    Bauwens, C. L., et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310, 2008.CrossRefGoogle Scholar
  2. 2.
    Beattie, G. M., et al. A novel approach to increase human islet cell mass while preserving beta-cell function. Diabetes 51:3435–3439, 2002.CrossRefGoogle Scholar
  3. 3.
    Berens, P. CircStat: A MATLAB toolbox for circular statistics. J. Stat. Softw. 31:1–21, 2009.MathSciNetGoogle Scholar
  4. 4.
    Bonner-Weir, S., et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 97:7999–8004, 2000.CrossRefGoogle Scholar
  5. 5.
    Boretti, M. I., and K. J. Gooch. Induced cell clustering enhances islet beta cell formation from human cultures enriched for pancreatic ductal epithelial cells. Tissue Eng. 12:939–948, 2006.CrossRefGoogle Scholar
  6. 6.
    Boretti, M. I., and K. J. Gooch. Effect of extracellular matrix and 3D morphogenesis on islet hormone gene expression by Ngn3-infected mouse pancreatic ductal epithelial cells. Tissue Eng. A 14:1927–1937, 2008.CrossRefGoogle Scholar
  7. 7.
    Brereton, H. C., et al. Homotypic cell contact enhances insulin but not glucagon secretion. Biochem. Biophys. Res. Commun. 344:995–1000, 2006.CrossRefGoogle Scholar
  8. 8.
    Choi, Y. Y., B. G. Chung, D. H. Lee, A. Khademhosseini, J.-H. Kim, and S.-H. Lee. Controlled-size embryoid body formation in concave microwell arrays. Biomaterial 31:4296–4303, 2010.CrossRefGoogle Scholar
  9. 9.
    Curtis, A. S., and J. V. Forrester. The competitive effects of serum proteins on cell adhesion. J. Cell Sci. 71:17–35, 1984.Google Scholar
  10. 10.
    Davis, G. E., and C. W. Camarillo. Regulation of endothelial cell morphogenesis by integrins, mechanical forces, and matrix guidance pathways. Exp. Cell Res. 216:113–123, 1995.CrossRefGoogle Scholar
  11. 11.
    DiMilla, P. A., J. A. Stone, J. A. Quinn, S. M. Albelda, and D. A. Lauffenburger. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122:729–737, 1993.CrossRefGoogle Scholar
  12. 12.
    Ferrell, N., et al. Vacuum-assisted cell seeding in a microwell cell culture system. Anal. Chem. 82:2380–2386, 2010.CrossRefGoogle Scholar
  13. 13.
    Gan, M. J. A. Albanese-O’Neill, and M.J. Haller. Type 1 diabetes: current concepts in epidemiology, pathophysiology, clinical care, and research. Curr. Probl. Pediatr. Adolesc. Health Care 42:269–291, 2012.CrossRefGoogle Scholar
  14. 14.
    Gershengorn, M. C., A. A. Hardikar, C. Wei, E. Geras-Raaka, B. Marcus-Samuels, and B. M. Raaka. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306:2261–2264, 2004.CrossRefGoogle Scholar
  15. 15.
    Green, J. E. F., S. L. Waters, K. M. Shakesheff, and H. M. Byrne. A mathematical model of liver cell aggregation in vitro. Bull. Math. Biol. 71:906–930, 2009.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Hansen, C. H., R. G. Endres, and N. S. Wingreen. Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLoS Comput. Biol. 4:e1, 2008.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hardikar, A. A., B. Marcus-Samuels, E. Geras-Raaka, B. M. Raaka, and M. C. Gershengorn. Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates. Proc. Natl. Acad. Sci. USA 100:7117–7122, 2003.CrossRefGoogle Scholar
  18. 18.
    Hatziavramidis, D. T., T. M. Karatzas, and G. P. Chrousos. Pancreatic islet cell transplantation: an update. Ann. Biomed. Eng. 41:469–476, 2013.CrossRefGoogle Scholar
  19. 19.
    Hummel, K., K. K. McFann, J. Realsen, L. H. Messer, G. J. Klingensmith, and H. P. Chase. The increasing onset of type 1 diabetes in children. J. Pediatr. 161:652–657, 2012.CrossRefGoogle Scholar
  20. 20.
    Hwang, Y.-S., B. G. Chung, D. Ortmann, N. Hattori, H.-C. Moeller, and A. Khademhosseini. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. USA 106:16978–16983, 2009.CrossRefGoogle Scholar
  21. 21.
    James, S. A. M., et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343:230–238, 2000.CrossRefGoogle Scholar
  22. 22.
    Kay, R. R., P. Langridge, D. Traynor, and O. Hoeller. Changing directions in the study of chemotaxis. Nat. Rev. Mol. Cell Biol. 9:455–463, 2008.CrossRefGoogle Scholar
  23. 23.
    LeCluyse, E. L., P. L. Bullock, and A. Parkinson. Strategies for restoration and maintenance of normal hepatic structure and function in long-term cultures of rat hepatocytes. Adv. Drug Deliv. Rev. 22:133–186, 1996.CrossRefGoogle Scholar
  24. 24.
    Luther, M. J., et al. MIN6 beta-cell–beta-cell interactions influence insulin secretory responses to nutrients and non-nutrients. Biochem. Biophys. Res. Commun. 343:99–104, 2006.CrossRefGoogle Scholar
  25. 25.
    Ma, X., et al. Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys. J. Biophys. Soc. 104:1–9, 2013.Google Scholar
  26. 26.
    Maher, J., J. V. Martell, B. A. Brantley, E. B. Cox, J. E. Niedel, and W. F. Rosse. The response of human neutrophils to a chemotactic tripeptide (N-formyl-methionyl-leucyl-phenylalanine) studied by microcinematography. Blood 64:221–228, 1984.Google Scholar
  27. 27.
    Mishra, P. K., S. R. Singh, I. G. Joshua, and S. C. Tyagi. Stem cells as therapeutic target for diabetes. Front Biosci. 15:461–477, 2011.CrossRefGoogle Scholar
  28. 28.
    Park, J., et al. Microfabrication-based modulation of embryonic stem cell differentiation. Lab Chip 7:1018–1028, 2007.CrossRefGoogle Scholar
  29. 29.
    Pictet, R. L., W. R. Clark, R. H. Williams, and W. J. Rutter. An ultrastructural analysis of the developing embryonic pancreas. Dev. Biol. 29:436–467, 1972.CrossRefGoogle Scholar
  30. 30.
    Ramiya, V. K., M. Maraist, K. E. Arfors, D. A. Schatz, A. B. Peck, and J. G. Cornelius. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. 6:278–282, 2000.CrossRefGoogle Scholar
  31. 31.
    Rosenberg, L. Induction of islet cell neogenesis in the adult pancreas: the partial duct obstruction model. Microsc. Res. Tech. 43:337–346, 1998.CrossRefGoogle Scholar
  32. 32.
    Saltzman, W. M. Tissue engineering: engineering principles for the design of replacement organs and tissues. New York: Oxford University Press, p. 544, 2004.Google Scholar
  33. 33.
    Shapiro, A. M. J., et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355:1318–1330, 2006.CrossRefGoogle Scholar
  34. 34.
    Steinberg, M. S. Reconstruction of tissues by dissociated cells. Science 141:401–408, 1963.CrossRefGoogle Scholar
  35. 35.
    Van Haastert, P. J. M., and M. Postma. Biased random walk by stochastic fluctuations of chemoattractant-receptor interactions at the lower limit of detection. Biophys. J. 93:1787–1796, 2007.CrossRefGoogle Scholar
  36. 36.
    Vernon, R. B., J. C. Angello, M. L. Iruela-Arispe, T. F. Lane, and E. H. Sage. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66:536–547, 1992.Google Scholar
  37. 37.
    Wei, C., E. Geras-Raaka, B. Marcus-Samuels, Y. Oron, and M. C. Gershengorn. Trypsin and thrombin accelerate aggregation of human endocrine pancreas precursor cells. J. Cell. Physiol. 206:322–328, 2006.CrossRefGoogle Scholar
  38. 38.
    Widman, M. T., D. Emerson, C. C. Chiu, and R. M. Worden. Modeling microbial chemotaxis in a diffusion gradient chamber. Biotechnol. Bioeng. 55:191–205, 1997.CrossRefGoogle Scholar
  39. 39.
    Wilensky, U. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University, 1999.
  40. 40.
    Winer, J. P., S. Oake, and P. A. Janmey. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS ONE 4:e6382, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Steven J. Holfinger
    • 1
  • James W. Reinhardt
    • 1
  • Rashmeet Reen
    • 1
  • Kevin M. Schultz
    • 2
  • Kevin M. Passino
    • 2
  • William E. Ackerman
    • 3
  • Douglas A. Kniss
    • 1
    • 3
  • Leonard M. Sander
    • 4
  • Daniel Gallego-Perez
    • 1
  • Keith J. Gooch
    • 1
    • 5
    Email author
  1. 1.Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Department of Electrical and Computer EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.Department of Obstetrics and Gynecology, College of Medicine, and Wexner Medical CenterThe Ohio State UniversityColumbusUSA
  4. 4.Department of PhysicsUniversity of MichiganAnn ArborUSA
  5. 5.The Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusUSA

Personalised recommendations