Cellular and Molecular Bioengineering

, Volume 8, Issue 1, pp 106–118 | Cite as

Impulsive Enzymes: A New Force in Mechanobiology

  • Peter J. ButlerEmail author
  • Krishna K. Dey
  • Ayusman SenEmail author


We review studies that quantify newly discovered forces from single enzymatic reactions. These forces arise from the conversion of chemical energy to kinetic energy, which can be harnessed to direct diffusion of the enzyme up a concentration gradient of substrate, a novel phenomenon of molecular chemotaxis. When immobilized, enzymes can move fluid around them and perform directional pumping in microfluidic chambers. Because of the extensive array of enzymes in biological cells, we also develop three new hypotheses: that enzymatic self diffusion can assist in organizing signaling pathways in cells, can assist in pumping of fluid in cells, and can impose biologically significant forces on organelles, which will be manifested as stochastic motion not explained by thermal forces or myosin II. Such mechanochemical phenomena open up new directions in research in mechanobiology in which all enzymes, in addition to their primary function as catalysts for reactions, may have secondary functions as initiators of mechanosensitive transduction pathways.


Cell mechanics Mechanobiology Myosin Phosphorylation Rheology Diffusiophoresis Molecular swimmer Chemotaxis Cytoplasm 



PJB acknowledges financial support from the National Science Foundation. CMMI-1334847. AS acknowledges financial support from the Penn State Center for Nanoscale Science (NSF-MRSEC, DMR-0820404).

Conflict of interest

Peter J. Butler, Krishna K. Dey, and Ayusman Sen have no conflicts of interest to declare.


  1. 1.
    Beeg, J., et al. Transport of beads by several kinesin motors. Biophys. J. 94:532–541, 2008.CrossRefGoogle Scholar
  2. 2.
    Bursac, P., et al. Cytoskeletal remodelling and slow dynamics in the living cell. Nat. Mater. 4:557–561, 2005.CrossRefGoogle Scholar
  3. 3.
    Carrat, F., et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am. J. Epidemiol. 167:775–785, 2008.CrossRefGoogle Scholar
  4. 4.
    Chance, B. The reaction of catalase and cyanide. J. Biol. Chem. 179:1299–1309, 1949.Google Scholar
  5. 5.
    Colberg, P. H., and R. Kapral. Ångström-scale chemically powered motors. EPL (Europhys. Lett.) 106:30004, 2014.CrossRefGoogle Scholar
  6. 6.
    Córdova-Figueroa, U. M., and J. F. Brady. Osmotic propulsion: the osmotic motor. Phys. Rev. Lett. 100:158303, 2008.CrossRefGoogle Scholar
  7. 7.
    Cressman, A., Y. Togashi, A. S. Mikhailov, and R. Kapral. Mesoscale modeling of molecular machines: cyclic dynamics and hydrodynamical fluctuations. Phys. Rev. E. Stat. Nonlinear Soft Matter Phys. 77:050901, 2008.CrossRefGoogle Scholar
  8. 8.
    Dangaria, J. H., and P. J. Butler. Macrorheology and adaptive microrheology of endothelial cells subjected to fluid shear stress. Am. J. Physiol. Cell Physiol. 293:C1568–C1575, 2007.CrossRefGoogle Scholar
  9. 9.
    Dey, K. K., S. Das, M. F. Poyton, S. Sengupta, P. J. Butler, P. S. Cremer, and A. Sen. Chemotactic separation of enzymes. ACS Nano 8:11941–11949, 2014.Google Scholar
  10. 10.
    Elson, E. L., and D. Magde. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27, 1974.CrossRefGoogle Scholar
  11. 11.
    Ermak, D. L., and J. A. McCammon. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69:1352, 1978.CrossRefGoogle Scholar
  12. 12.
    Goel, A., and V. Vogel. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat. Nanotechnol. 3:465–475, 2008.CrossRefGoogle Scholar
  13. 13.
    Goldsmith, R. H., and W. E. Moerner. Watching conformational- and photo-dynamics of single fluorescent proteins in solution. Nat. Chem. 2:179–186, 2010.CrossRefGoogle Scholar
  14. 14.
    Goldstein, R. E., I. Tuval, and J.-W. van de Meent. Microfluidics of cytoplasmic streaming and its implications for intracellular transport. Proc. Natl. Acad. Sci. USA 105:3663–3667, 2008.CrossRefGoogle Scholar
  15. 15.
    Golestanian, R. Anomalous diffusion of symmetric and asymmetric active colloids. Phys. Rev. Lett. 102:188305, 2009.CrossRefGoogle Scholar
  16. 16.
    Golestanian, R. Synthetic mechanochemical molecular swimmer. Phys. Rev. Lett. 105:018103, 2010.CrossRefGoogle Scholar
  17. 17.
    Golestanian, R., and A. Ajdari. Mechanical response of a small swimmer driven by conformational transitions. Phys. Rev. Lett. 100:038101, 2008.CrossRefGoogle Scholar
  18. 18.
    Golestanian, R., T. Liverpool, and A. Ajdari. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94:220801, 2005.CrossRefGoogle Scholar
  19. 19.
    Gullapalli, R. R., T. Tabouillot, R. Mathura, J. H. Dangaria, and P. J. Butler. Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology. J. Biomed. Opt. 12:14012, 2007.CrossRefGoogle Scholar
  20. 20.
    Guo, M., et al. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158:822–832, 2014.CrossRefGoogle Scholar
  21. 21.
    Hancock, W. O. Bidirectional cargo transport: moving beyond tug of war. Nat. Rev. Mol. Cell Biol. 15:615–628, 2014.CrossRefGoogle Scholar
  22. 22.
    Henzler-Wildman, K. A., et al. Intrinsic motions along an enzymatic reaction trajectory. Nature 450:838–844, 2007.CrossRefGoogle Scholar
  23. 23.
    Hoffman, B. D., G. Massiera, K. M. Van Citters, and J. C. Crocker. The consensus mechanics of cultured mammalian cells. Proc. Natl. Acad. Sci. USA 103:10259–10264, 2006.CrossRefGoogle Scholar
  24. 24.
    Hoffman, B. D., C. Grashoff, and M. A. Schwartz. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323, 2011.CrossRefGoogle Scholar
  25. 25.
    Hong, Y., N. Blackman, N. Kopp, A. Sen, and D. Velegol. Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99:178103, 2007.CrossRefGoogle Scholar
  26. 26.
    Hurt, A. C., et al. Performance of influenza rapid point-of-care tests in the detection of swine lineage A(H1N1) influenza viruses. Influenza Other Respir. Viruses 3:171–176, 2009.CrossRefGoogle Scholar
  27. 27.
    Ke, H., S. Ye, R. L. Carroll, and K. Showalter. Motion analysis of self-propelled Pt-silica particles in hydrogen peroxide solutions. J. Phys. Chem. A 114:5462–5467, 2010.CrossRefGoogle Scholar
  28. 28.
    Lee, S. E., R. D. Kamm, and M. R. Mofrad. Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J. Biomech. 40:2096–2106, 2007.CrossRefGoogle Scholar
  29. 29.
    Lee, T.-C., et al. Self-propelling nanomotors in the presence of strong Brownian forces. Nano Lett. 14:2407–2412, 2014.CrossRefGoogle Scholar
  30. 30.
    Liou, G.-Y., and P. Storz. Reactive oxygen species in cancer. Free Radic. Res. 44:479–496, 2010.CrossRefGoogle Scholar
  31. 31.
    Magde, D., E. L. Elson, and W. W. Webb. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61, 1974.CrossRefGoogle Scholar
  32. 32.
    Mahadevan, L., and P. Matsudaira. Motility powered by supramolecular springs and ratchets. Science 288:95–100, 2000.CrossRefGoogle Scholar
  33. 33.
    Mehta, A. D., M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons. Single-molecule biomechanics with optical methods. Science 283:1689–1695, 1999.CrossRefGoogle Scholar
  34. 34.
    Moscona, A. Neuraminidase inhibitors for influenza. N. Engl. J. Med. 353:1363–1373, 2005.CrossRefGoogle Scholar
  35. 35.
    Muddana, H. S., S. Sengupta, T. E. Mallouk, A. Sen, and P. J. Butler. Substrate catalysis enhances single-enzyme diffusion. J. Am. Chem. Soc. 132:2110–2111, 2010.CrossRefGoogle Scholar
  36. 36.
    Nordberg, J., and E. S. Arnér. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 31:1287–1312, 2001.CrossRefGoogle Scholar
  37. 37.
    Oiwa, K., and H. Sakakibara. Recent progress in dynein structure and mechanism. Curr. Opin. Cell Biol. 17:98–103, 2005.CrossRefGoogle Scholar
  38. 38.
    Parry, B. R., et al. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156:183–194, 2014.CrossRefGoogle Scholar
  39. 39.
    Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45:3, 1977.CrossRefGoogle Scholar
  40. 40.
    Riedel, C., et al. The heat released during catalytic turnover enhances the diffusion of an enzyme. Nature 2014. doi: 10.1038/nature14043.Google Scholar
  41. 41.
    Sakaue, T., R. Kapral, and A. S. Mikhailov. Nanoscale swimmers: hydrodynamic interactions and propulsion of molecular machines. Eur. Phys. J. B 75:381–387, 2010.CrossRefzbMATHGoogle Scholar
  42. 42.
    Schliwa, M., and G. Woehlke. Molecular motors. Nature 422:759–765, 2003.CrossRefGoogle Scholar
  43. 43.
    Seger, R., and E. G. Krebs. The MAPK signaling cascade. FASEB J. 9:726–735, 1995.Google Scholar
  44. 44.
    Sengupta, S., et al. Enzyme molecules as nanomotors. J. Am. Chem. Soc. 135:1406–1414, 2013.CrossRefGoogle Scholar
  45. 45.
    Sengupta, S., et al. DNA polymerase as a molecular motor and pump. ACS Nano 8:2410–2418, 2014.CrossRefGoogle Scholar
  46. 46.
    Sengupta, S., et al. Self-powered enzyme micropumps. Nat. Chem. 6:415–422, 2014.CrossRefGoogle Scholar
  47. 47.
    Spudich, J. A., S. E. Rice, R. S. Rock, T. J. Purcell, and H. M. Warrick. Optical traps to study properties of molecular motors. Cold Spring Harb. Protoc. 2011:1305–1318, 2011.Google Scholar
  48. 48.
    Switala, J., and P. C. Loewen. Diversity of properties among catalases. Arch. Biochem. Biophys. 401:145–154, 2002.CrossRefGoogle Scholar
  49. 49.
    Tayo, A., J. Ellis, L. Linden Phillips, S. Simpson, and D. J. Ward. Emerging point of care tests for influenza: innovation or status quo. Influenza Other Respir. Viruses 6:291–298, 2012.CrossRefGoogle Scholar
  50. 50.
    Tian, A., and T. Baumgart. Sorting of lipids and proteins in membrane curvature gradients. Biophys. J. 96:2676–2688, 2009.CrossRefGoogle Scholar
  51. 51.
    Tian, T., et al. Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nat. Cell Biol. 9:905–914, 2007.CrossRefGoogle Scholar
  52. 52.
    Tyska, M. J., and D. M. Warshaw. The myosin power stroke. Cell Motil. Cytoskelet. 51:1–15, 2002.CrossRefGoogle Scholar
  53. 53.
    Vale, R. D., and R. A. Milligan. The way things move: looking under the hood of molecular motor proteins. Science 288:88–95, 2000.CrossRefGoogle Scholar
  54. 54.
    Valentine, M., et al. Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Phys. Rev. E 64:061506, 2001.CrossRefGoogle Scholar
  55. 55.
    Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.CrossRefGoogle Scholar
  56. 56.
    Yamada, S., D. Wirtz, and S. C. Kuo. Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78:1736–1747, 2000.CrossRefGoogle Scholar
  57. 57.
    Yin, H., et al. Transcription against an applied force. Science 270:1653–1657, 1995.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations