Advertisement

Cellular and Molecular Bioengineering

, Volume 8, Issue 1, pp 197–212 | Cite as

A Mathematical Model for the Release of Peptide-Binding Drugs from Affinity Hydrogels

  • Tuoi T. N. Vo
  • Martin G. Meere
Article

Abstract

A mathematical model for the release of peptide-binding drugs from affinity hydrogels is analyzed in detail. The model is not specific to any particular peptide/drug/gel system, and can describe drug release from a large class of affinity systems. In many cases, it is shown that the model can be reduced to a coupled pair of nonlinear partial differential equations for the total drug and peptide. Quantitative information relating the rate of drug release to the values of the model parameters is presented. Numerical solutions are displayed that illustrate the rich variety of release behaviors the system is capable of exhibiting. Theoretical release profiles generated by the model are compared with experimental release data from three different studies, and good agreement is found. The development of reliable mathematical models for affinity hydrogels will provide useful design tools for these systems.

Keywords

Drug delivery Affinity-based delivery system Peptide-binding drug Mathematical model 

Notes

Acknowledgments

We gratefully acknowledge the support of the Mathematics Applications Consortium for Science and Industry (www.macsi.ul.ie) funded by the Science Foundation Ireland (SFI) Investigator Award 12/IA/1683. Dr Meere thanks NUI Galway for the award of a travel grant. We thank the referees for their helpful suggestions to improve the paper.

Conflict of interest

Tuoi T. N. Vo and Martin G. Meere declare that they have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Supplementary material

12195_2014_375_MOESM1_ESM.pdf (38 kb)
Supplementary material 1 (PDF 38 kb)

References

  1. 1.
    Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell, 5th edition. New York: Garland Science, 2008Google Scholar
  2. 2.
    Bradbury, E. J., L. D. F. Moon, R. J. Popat, V. R. King, G. S. Bennett, P. N. Patel, J. W. Fawcett, and S. B. McMaho. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 416:636–640, 2002.CrossRefGoogle Scholar
  3. 3.
    Crank, J. The Mathematics of Diffusion, 2nd edition. Oxford: Oxford University Press, 1975.Google Scholar
  4. 4.
    Fu, A. S., T. R. Thatiparti, G. M. Saidel, and H. A. von Recum. Experimental studies and modeling of drug release from a tunable affinity-based drug delivery platform. Ann. Biomed. Eng. 39:2466–2475, 2011.CrossRefGoogle Scholar
  5. 5.
    Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64:18–23, 2012.CrossRefGoogle Scholar
  6. 6.
    Hu, S. M. and S. Schmidt. Interactions in sequential diffusion processes in semiconductors. J. Appl. Phys. 39:4272, 1968.CrossRefGoogle Scholar
  7. 7.
    Hubbell, J. A. Matrix-bound growth factors in tissue repair. Swiss. Med. Wkly. 136:387–391, 2006.Google Scholar
  8. 8.
    King, J. R. and C. P. Please. Diffusion of dopant in crystalline silicon: an asymptotic analysis. IMA J. Appl. Math. 37:185–197, 1986.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Lin, C. C. and K. S. Anseth. Controlling affinity binding with peptide-functionalized poly(ethylene glycol) hydrogels. Adv. Funct. Mater. 19:2325–2331, 2009.CrossRefGoogle Scholar
  10. 10.
    Lin, C. C., P. D. Boyer, A. A Aimetti, and K. S. Anseth. Regulating mcp-1 diffusion in affinity hydrogels for enhancing immuno-isolation. J. Control. Release 142:384–391, 2010.CrossRefGoogle Scholar
  11. 11.
    Lin, C. C., and A. T. Metters. Metal-chelating affinity hydrogels for sustained protein release. J. Biomed. Mater. Res. A 83A:954–964, 2007.CrossRefGoogle Scholar
  12. 12.
    Lin, C. C., A. T. Metters, and K. S. Anseth. Functional peg-peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine tnf\(\alpha\). Biomaterials. 30:4907–4914, 2009.CrossRefGoogle Scholar
  13. 13.
    Maxwell, D. J., B. C. Hicks, S. Parsons, and S. E. Sakiyama-Elbert, Development of rationally designed affinity-based drug delivery systems. Acta Biomater. 1:101–113, 2005.CrossRefGoogle Scholar
  14. 14.
    Maynard, H. D. and J. A. Hubbell. Discovery of a sulfated tetrapeptide that binds to vascular endothelial growth factor. Acta Biomater. 1:451–459, 2005.CrossRefGoogle Scholar
  15. 15.
    Mohtaram, N. K., A. Montgomery, and S. M. Willerth. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomed. Mater. 8(1–13):022001, 2013.Google Scholar
  16. 16.
    Pakulska, M. M., K. Vulic, and M. S. Shoichet. Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel. J. Control. Release 171:11–16, 2013.CrossRefGoogle Scholar
  17. 17.
    Please, C. P. & J. R. King. One- and two-dimensional nonlinear dopant diffusion in crystalline silicon - some analytical results. Solid State Electron. 31:299–305, 1988.CrossRefGoogle Scholar
  18. 18.
    Sakiyama-Elbert, S. E. and J. A. Hubbell, Development of fibrin derivatives for controlled release of heparin-binding growth factors. J. Control. Release 65:389–402, 2000.CrossRefGoogle Scholar
  19. 19.
    Shepard, J. A., P. J. Wesson, C. E. Wang, A. C. Stevans, S. J. Holland, A. Shikanov, B. A. Grzybowski, and L. D. Shea. Gene therapy vectors with enhanced transfection based on hydrogels modified with affinity peptides. Biomaterials. 32:5092–5099, 2011.CrossRefGoogle Scholar
  20. 20.
    Siepmann, J. and F. Siepmann. Mathematical modelling of drug delivery. Int. J. Pharm. 364:328–343, 2008.CrossRefGoogle Scholar
  21. 21.
    Tzafriri, A. R., A. D. Levin, and E. R. Edelman. Diffusion-limited binding explains binary dose response for local arterial and tumour drug delivery. Cell Prolif. 42:348–363, 2009.CrossRefGoogle Scholar
  22. 22.
    Varki, A., R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, and M. E. Etzler. Essentials of Glycobiology, 2nd edition. New York: Cold Spring Harbor Laboratory Press, 2009.Google Scholar
  23. 23.
    Vo, T. T. N. Mathematical Analysis of Some Models for Drug Delivery, PhD thesis. Galway: National University of Ireland Galway, 2012.Google Scholar
  24. 24.
    Vo, T. T. N. and M. G. Meere. Minimizing the passive release of heparin-binding growth factors from an affinity-based delivery system. Math. Med. Biol. 29:1–26, 2012.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Vo, T. T. N. and M. G. Meere. The mathematical modelling of affinity-based drug delivery systems. J. Coupled Syst. Multiscale Dyn. (submitted)Google Scholar
  26. 26.
    Vo, T. T. N., R. Yang, Y. Rochev, and M. G. Meere. A mathematical model for drug delivery. Prog. Ind. Math. ECMI 2010:521–528, 2010.Google Scholar
  27. 27.
    Vulic, K., M. M. Pakulska, R. Sonthalia, A. Ramachandran, and M. S. Shoichet. Mathematical model accurately predicts protein release from an affinity-based delivery system. J. Control. Release. 197:69–77, 2015.CrossRefGoogle Scholar
  28. 28.
    Vulic, K. and M. S. Shoichet. Tunable growth factor delivery from injectable hydrogels for tissue engineering. J. Am. Chem. Soc. 134:882–885, 2012.CrossRefGoogle Scholar
  29. 29.
    Vulic, K. and M. S. Shoichet. Affinity-based drug delivery systems for tissue repair and regeneration. Biomacromolecules. 15:3867–3880, 2014.CrossRefGoogle Scholar
  30. 30.
    Wang, N. X. and H. A. von Recum. Affinity-based drug delivery. Macromol. Biosci. 11:321–332, 2011.CrossRefGoogle Scholar
  31. 31.
    Willerth, S. M., P. J. Johnson, D. J. Maxwell, S. R. Parsons, M. E. Doukas, and S. E. Sakiyama-Elbert. Rationally designed peptides for controlled release of nerve growth factor from fibrin matrices. J. Biomed. Mater. Res. A 80A:13–23, 2007.CrossRefGoogle Scholar
  32. 32.
    Wood, M. D., A. M. Moore, D. A. Hunter, S. Tuffaha, G. H. Borschel, S. E. Mackinnon, and S. E. Sakiyama-Elbert. Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater. 5:959–968, 2009.CrossRefGoogle Scholar
  33. 33.
    Wood, M. D. and S. E. Sakiyama-Elbert. Release rate controls biological activity of nerve growth factor released from fibrin matrices containing affinity-based delivery systems. J. Biomed. Mater. Res. A 84A:300–312, 2008.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  1. 1.MACSI, Department of Mathematics and StatisticsUniversity of LimerickLimerickIreland
  2. 2.School of Mathematics, Statistics and Applied MathematicsNational University of Ireland, GalwayGalwayIreland

Personalised recommendations