Advertisement

Cellular and Molecular Bioengineering

, Volume 7, Issue 3, pp 394–408 | Cite as

Microscale Bioadhesive Hydrogel Arrays for Cell Engineering Applications

  • Ravi Ghanshyam Patel
  • Alberto Purwada
  • Leandro Cerchietti
  • Giorgio Inghirami
  • Ari Melnick
  • Akhilesh K. Gaharwar
  • Ankur Singh
Article

Abstract

Bioengineered hydrogels have been explored in cell and tissue engineering applications to support cell growth and modulate its behavior. A rationally designed scaffold should allow for encapsulated cells to survive, adhere, proliferate, remodel the niche, and can be used for controlled delivery of biomolecules. Here we report a microarray of composite bioadhesive microgels with modular dimensions, tunable mechanical properties and bulk modified adhesive biomolecule composition. Composite bioadhesive microgels of maleimide functionalized polyethylene glycol (PEG-MAL) with interpenetrating network (IPN) of gelatin ionically cross-linked with silicate nanoparticles were engineered by integrating microfabrication with Michael-type addition chemistry and ionic gelation. By encapsulating clinically relevant anchorage-dependent cervical cancer cells and suspension leukemia cells as cell culture models in these composite microgels, we demonstrate enhanced cell spreading, survival, and metabolic activity compared to control gels. The composite bioadhesive hydrogels represent a platform that could be used to study independent effect of stiffness and adhesive ligand density on cell survival and function. We envision that such microarrays of cell adhesive microenvironments, which do not require harsh chemical and UV crosslinking conditions, will provide a more efficacious cell culture platform that can be used to study cell behavior and survival, function as building blocks to fabricate 3D tissue structures, cell delivery systems, and high throughput drug screening devices.

Keywords

Cell adhesive Microgels Michael-type addition Composite hydrogels Bioadhesive Cancer Leukemia 

Notes

Acknowledgments

The authors would like to acknowledge financial support by Grants from the National Institutes of Health (1R21CA185236-01) and the Cornell University-Ithaca and Weill Cornell Medical College seed grant. The authors also thank Prof. Marjolein C.H. van der Meulen in the Department of Biomedical Engineering and the Sibley School of Mechanical and Aerospace Engineering for providing cells. The authors also thank Dr. Brian Kirby in Sibley School of Mechanical and Aerospace Engineering at Cornell University for access to the cells, microscopy facility and spectrophotometer. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Conflict of interest

Ravi Ghanshyam Patel, Alberto Purwada, Leandro Cerchietti, Giorgio Inghirami, Ari Melnick, Akhilesh Gaharwar, and Ankur Singh declare that they have no conflicts of interest.

Ethical standards

No animal or human studies were carried out by the authors for this article.

References

  1. 1.
    Alge, D. L., M. A. Azagarsamy, D. F. Donohue, and K. S. Anseth. Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry. Biomacromolecules 14(4):949–953, 2013.CrossRefGoogle Scholar
  2. 2.
    Allazetta, S., T. C. Hausherr, and M. P. Lutolf. Microfluidic synthesis of cell-type-specific artificial extracellular matrix hydrogels. Biomacromolecules 14(4):1122–1131, 2013.CrossRefGoogle Scholar
  3. 3.
    Anseth, K. S., A. T. Metters, S. J. Bryant, P. J. Martens, J. H. Elisseeff, and C. N. Bowman. In situ forming degradable networks and their application in tissue engineering and drug delivery. J. Control Release 78(1–3):199–209, 2002.CrossRefGoogle Scholar
  4. 4.
    Benton, J. A., C. A. DeForest, V. Vivekanandan, and K. S. Anseth. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng. Part A 15(11):3221–3230, 2009.CrossRefGoogle Scholar
  5. 5.
    Benton, J. A., B. D. Fairbanks, and K. S. Anseth. Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials 30(34):6593–6603, 2009.CrossRefGoogle Scholar
  6. 6.
    Burdick, J. A., and K. S. Anseth. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23(22):4315–4323, 2002.CrossRefGoogle Scholar
  7. 7.
    Chaudhuri, O., S. T. Koshy, C. Branco da Cunha, J. W. Shin, C. S. Verbeke, K. H. Allison, and D. J. Mooney. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 2014. doi: 10.1038/nmat4009
  8. 8.
    Coyer, S. R., A. Singh, D. W. Dumbauld, D. A. Calderwood, S. W. Craig, E. Delamarche, and A. J. Garcia. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J. Cell Sci. 125(21):5110–5123, 2012.CrossRefGoogle Scholar
  9. 9.
    DeForest, C. A., B. D. Polizzotti, and K. S. Anseth. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8(8):659–664, 2009.Google Scholar
  10. 10.
    Dolatshahi-Pirouz, A., M. Nikkhah, A. K. Gaharwar, B. Hashmi, E. Guermani, H. Aliabadi, G. Camci-Unal, T. Ferrante, M. Foss, D. E. Ingber, and A. Khademhosseini. A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci. Rep. 4:3896, 2014.CrossRefGoogle Scholar
  11. 11.
    Dumbauld, D. W., T. T. Lee, A. Singh, J. Scrimgeour, C. A. Gersbach, E. A. Zamir, J. P. Fu, C. S. Chen, J. E. Curtis, S. W. Craig, and A. J. Garcia. How vinculin regulates force transmission. Proc. Natl. Acad. Sci. USA 110(24):9788–9793, 2013.CrossRefGoogle Scholar
  12. 12.
    Fairbanks, B. D., M. P. Schwartz, A. E. Halevi, C. R. Nuttelman, C. N. Bowman, and K. S. Anseth. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 21(48):5005–5010, 2009.Google Scholar
  13. 13.
    Frampton, J. P., M. R. Hynd, M. L. Shuler, and W. Shain. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture. Biomed. Mater. 6(1):015002, 2011.CrossRefGoogle Scholar
  14. 14.
    Gaharwar, A. K., V. Kishore, C. Rivera, W. Bullock, C. J. Wu, O. Akkus, and G. Schmidt. Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol. Biosci. 12(6):779–793, 2012.CrossRefGoogle Scholar
  15. 15.
    Gaharwar, A. K., S. M. Mihaila, A. Swami, A. Patel, S. Sant, R. L. Reis, A. P. Marques, M. E. Gomes, and A. Khademhosseini. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv. Mater. 25(24):3329–3336, 2013.CrossRefGoogle Scholar
  16. 16.
    Gaharwar, A. K., N. A. Peppas, and A. Khademhosseini. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 111(3):441–453, 2014.Google Scholar
  17. 17.
    Gaharwar, A. K., C. Rivera, C. J. Wu, B. K. Chan, and G. Schmidt. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics. Mater. Sci. Eng. C 33(3):1800–1807, 2013.CrossRefGoogle Scholar
  18. 18.
    Headen, D. M., G. Aubry, H. Lu, and A. J. García. Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation. Adv. Mater. 26(9):3003–3008, 2014.Google Scholar
  19. 19.
    Hiemstra, C., L. J. Aa, Z. Zhong, P. J. Dijkstra, and J. Feijen. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition. Biomacromolecules 8(5):1548–1556, 2007.CrossRefGoogle Scholar
  20. 20.
    Hiemstra, C., L. J. van der Aa, Z. Zhong, P. J. Dijkstra, and J. Feijen. Novel in situ forming, degradable dextran hydrogels by Michael addition chemistry: synthesis, rheology, and degradation. Macromolecules 40(4):1165–1173, 2007.CrossRefGoogle Scholar
  21. 21.
    Huebsch, N., P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, and D. J. Mooney. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9(6):518–526, 2010.Google Scholar
  22. 22.
    Hutson, C. B., J. W. Nichol, H. Aubin, H. Bae, S. Yamanlar, S. Al-Haque, S. T. Koshy, and A. Khademhosseini. Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels. Tissue Eng. Part A 17(13–14):1713–1723, 2011.CrossRefGoogle Scholar
  23. 23.
    Kesselman, L. R., S. Shinwary, P. R. Selvaganapathy, and T. Hoare. Synthesis of monodisperse, covalently cross-linked, degradable “smart” microgels using microfluidics. Small 8(7):1092–1098, 2012.CrossRefGoogle Scholar
  24. 24.
    Kunz-Schughart, L. A., M. Kreutz, and R. Knuechel. Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int. J. Exp. Pathol. 79(1):1–23, 1998.CrossRefGoogle Scholar
  25. 25.
    Lee, G. Y., P. A. Kenny, E. H. Lee, and M. J. Bissell. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4(4):359–365, 2007.CrossRefGoogle Scholar
  26. 26.
    Lei, Y., S. Gojgini, J. Lam, and T. Segura. The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials 32(1):39–47, 2011.CrossRefGoogle Scholar
  27. 27.
    Lim, F., and A. M. Sun. Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472):908–910, 1980.CrossRefGoogle Scholar
  28. 28.
    Loessner, D., K. S. Stok, M. P. Lutolf, D. W. Hutmacher, J. A. Clements, and S. C. Rizzi. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31(32):8494–8506, 2010.CrossRefGoogle Scholar
  29. 29.
    Lutolf, M. P., P. M. Gilbert, and H. M. Blau. Designing materials to direct stem-cell fate. Nature 462(7272):433–441, 2009.CrossRefGoogle Scholar
  30. 30.
    Lutolf, M. P., and J. A. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23(1):47–55, 2005.CrossRefGoogle Scholar
  31. 31.
    Magley, J., C. Moyers, K. S. Ballard, and S. Tedjarati. Secondary cervical cancer in a patient with chronic lymphocytic leukemia and recurrent chronic lymphocytic leukemia mimicking recurrent cervical dysplasia: a case report. J. Reprod. Med. 55(3–4):175–178, 2010.Google Scholar
  32. 32.
    Metters, A., and J. Hubbell. Network formation and degradation behavior of hydrogels formed by Michael-type addition reactions. Biomacromolecules 6(1):290–301, 2005.CrossRefGoogle Scholar
  33. 33.
    Miller, B. E., F. R. Miller, and G. H. Heppner. Factors affecting growth and drug sensitivity of mouse mammary tumor lines in collagen gel cultures. Cancer Res. 45(9):4200–4205, 1985.Google Scholar
  34. 34.
    Panda, P., S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8(7):1056–1061, 2008.CrossRefGoogle Scholar
  35. 35.
    Phelps, E. A., N. O. Enemchukwu, V. F. Fiore, J. C. Sy, N. Murthy, T. A. Sulchek, T. H. Barker, and A. J. Garcia. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24(1):64–70, 2012.Google Scholar
  36. 36.
    Qiu, Y., J. J. Lim, L. Scott, Jr., R. C. Adams, H. T. Bui, and J. S. Temenoff. PEG-based hydrogels with tunable degradation characteristics to control delivery of marrow stromal cells for tendon overuse injuries. Acta Biomater. 7(3):959–966, 2011.CrossRefGoogle Scholar
  37. 37.
    Raeber, G. P., M. P. Lutolf, and J. A. Hubbell. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys. J. 89(2):1374–1388, 2005.CrossRefGoogle Scholar
  38. 38.
    Rossow, T., J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert. Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics. J. Am. Chem. Soc. 134(10):4983–4989, 2012.CrossRefGoogle Scholar
  39. 39.
    Sala, A., P. Hanseler, A. Ranga, M. P. Lutolf, J. Voros, M. Ehrbar, and F. E. Weber. Engineering 3D cell instructive microenvironments by rational assembly of artificial extracellular matrices and cell patterning. Integr. Biol. (Camb.) 3(11):1102–1111, 2011.CrossRefGoogle Scholar
  40. 40.
    Salimath, A. S., E. A. Phelps, A. V. Boopathy, P. L. Che, M. Brown, A. J. Garcia, and M. E. Davis. Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats. PLoS ONE 7(11):e50980, 2012.CrossRefGoogle Scholar
  41. 41.
    Selimovic, S., J. Oh, H. Bae, M. Dokmeci, and A. Khademhosseini. Microscale strategies for generating cell-encapsulating hydrogels. Polymers (Basel) 4(3):1554, 2012.CrossRefGoogle Scholar
  42. 42.
    Singh, A., H. Qin, I. Fernandez, J. Wei, J. Lin, L. W. Kwak, and K. Roy. An injectable synthetic immune-priming center mediates efficient T-cell class switching and T-helper 1 response against B cell lymphoma. J. Controlled Release Off. J. Controlled Release Soc. 155(2):184–192, 2011.CrossRefGoogle Scholar
  43. 43.
    Singh, A., S. Suri, T. Lee, J. M. Chilton, M. T. Cooke, W. Chen, J. Fu, S. L. Stice, H. Lu, T. C. McDevitt, and A. J. Garcia. Adhesion strength-based, label-free isolation of human pluripotent stem cells. Nat. Methods 10(5):438–444, 2013.CrossRefGoogle Scholar
  44. 44.
    Singh, A., S. Suri, and K. Roy. In-situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA-DNA carrying microparticles to dendritic cells. Biomaterials 2009. doi: 10.1016/j.biomaterials.2009.06.001.Google Scholar
  45. 45.
    Suri, S., and C. E. Schmidt. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomater. 5(7):2385–2397, 2009.CrossRefGoogle Scholar
  46. 46.
    Tomei, A. A., S. Siegert, M. R. Britschgi, S. A. Luther, and M. A. Swartz. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J. Immunol. 183(7):4273–4283, 2009.CrossRefGoogle Scholar
  47. 47.
    Weaver, V. M., S. Lelievre, J. N. Lakins, M. A. Chrenek, J. C. Jones, F. Giancotti, Z. Werb, and M. J. Bissell. beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2(3):205–216, 2002.CrossRefGoogle Scholar
  48. 48.
    Weaver, V. M., O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, and M. J. Bissell. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137(1):231–245, 1997.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Ravi Ghanshyam Patel
    • 1
  • Alberto Purwada
    • 2
  • Leandro Cerchietti
    • 3
  • Giorgio Inghirami
    • 4
  • Ari Melnick
    • 3
  • Akhilesh K. Gaharwar
    • 5
    • 6
  • Ankur Singh
    • 1
  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  2. 2.Department of Biomedical EngineeringCornell UniversityIthacaUSA
  3. 3.Division of Hematology and Medical Oncology, Weill Cornell Medical CollegeCornell UniversityNew YorkUSA
  4. 4.Department of Pathology, Weill Cornell Medical CollegeCornell UniversityNew YorkUSA
  5. 5.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA
  6. 6.Department of Materials Science & EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations