Cellular and Molecular Bioengineering

, Volume 7, Issue 4, pp 532–543 | Cite as

Substrate Stiffness Mediated Metastasis Like Phenotype of Colon Cancer Cells is Independent of Cell to Gel Adhesion



Growing experimental evidences suggest that cells can feel and respond to the mechanical stiffness of the substrate on which they adhere. Human colon carcinoma (HCT-8) cells can exhibit a dissociative, metastasis-like phenotype (MLP) in vitro when cultured on extra-cellular matrix (ECM) coated polyacrylamide (PA) hydrogels with appropriate mechanical stiffness (20–47 kPa), but not on very stiff (3.6 GPa) polystyrene substrates. In this study, we ask the question whether similar morphological transition occurs on cell–cell adhesion molecule, i.e., E-cadherin coated PA gels and if so, how the actin cytoskeleton and focal adhesions compare with ECM mediated response on gels. First, we culture the HCT-8 cells on E-cadherin coated PA gels of specific mechanical stiffness (20 kPa) and very stiff glass (~70 GPa) substrates. Interestingly, HCT-8 cells show the distinct dissociative in vitro MLP on 20 kPa gel only (not on stiff glass) on sixth day of culture; slightly earlier than the control (ECM/fibronectin coated 20 kPa gels). The complete inhibition of MLP on E-cadherin coated gels by pharmacological agent, blebbistatin, implicates the involvement of non-muscle myosin II activity in MLP. Confocal laser scanning microscopy and quantitative image analysis results suggest that the actin cytoskeletal architecture was characteristically different near the gel surface of E-cadherin and fibronectin coated gels of similar stiffness before dissociation. Conversely, identical cortical actin only structure was observed in the dissociated cells in both cases. Overall, these results suggest that MLP of HCT-8 cells on PA gels is independent of cell to gel adhesion in 2D in vitro culture.


Substrate stiffness Cells on polyacrylamide gel Metastasis-like phenotype of colon cancer cells Cytoskeleton Cell mechanics 

Supplementary material

12195_2014_345_MOESM1_ESM.docx (26.3 mb)
Supplementary material 1 (DOCX 26909 kb)


  1. 1.
    Aberle, H., S. Butz, J. Stappert, H. Weissig, R. Kemler, and H. Hoschuetzky. Assembly of the cadherin–catenin complex in vitro with recombinant proteins. J. Cell Sci. 107:655–663, 1994.Google Scholar
  2. 2.
    Abramoff, M. D., P. J. Magalhaes, and S. J. Ram. Image processing with ImageJ. Biophoton. Int. 11(7):36–41, 2004.Google Scholar
  3. 3.
    Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell, Chaps. 16 and 19. New York: Garland Science, 2007.Google Scholar
  4. 4.
    Bajaj, P., X. Tang, T. Saif, and R. Bashir. Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes. J. Biomed. Mater. Res. A 95(4):1261–1269, 2010.CrossRefGoogle Scholar
  5. 5.
    Baker, E. L., R. T. Bonnecaze, and M. H. Zaman. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys. J. 97:1013–1021, 2009.CrossRefGoogle Scholar
  6. 6.
    Baker, E. L., J. Lu, D. Yu, R. T. Bonnecaze, and M. H. Zaman. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys. J. 99:2048–2057, 2010.CrossRefGoogle Scholar
  7. 7.
    Barkan, D., H. Kleinman, J. L. Simmons, H. Asmussen, A. K. Kamaraju, M. J. Hoenorhoff, Z. Y. Liu, S. V. Costes, E. H. Cho, S. Lockett, C. Khanna, A. F. Chambers, and J. E. Green. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68:6241–6250, 2008.CrossRefGoogle Scholar
  8. 8.
    Burdick, M. M., J. M. McCaffery, Y. S. Kim, B. S. Bochner, and K. Konstantopoulos. Colon carcinoma cell glycolipids, integrins, and other glycoproteins mediate adhesion to HUVECs under flow. Am. J. Physiol. Cell Physiol. 284(4):977–987, 2003.CrossRefGoogle Scholar
  9. 9.
    Byfield, F. J., Q. Wen, I. Levental, K. Nordstrom, P. E. Arratia, et al. Absence of filamin a prevents cells from responding to stiffness gradients on gels coated with collagen but not fibronectin. Biophys. J. 96:5095–5102, 2009.CrossRefGoogle Scholar
  10. 10.
    Chaffer, C. L., and R. A. Weinberg. A perspective on cancer cell metastasis. Science 331:1559–1564, 2011.CrossRefGoogle Scholar
  11. 11.
    Choi, J. S., and B. A. Harley. The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials 33:4460–4468, 2012.CrossRefGoogle Scholar
  12. 12.
    Chopra, A., E. Tabdanov, H. Patel, P. A. Janmey, and J. Y. Kresh. Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing. Am. J. Physiol. Heart Circ. Physiol. 300:1252–1266, 2011.CrossRefGoogle Scholar
  13. 13.
    Damljanovic, V., B. C. Lagerholm, and K. Jacobson. Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell mechanotransduction assays. Biotechniques 39:847–851, 2005.CrossRefGoogle Scholar
  14. 14.
    Discher, D., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.CrossRefGoogle Scholar
  15. 15.
    Engler, A. J., C. Carag-Krieger, C. P. Johnson, M. Raab, H. Y. Tang, D. W. Speicher, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121:3794–3802, 2008.CrossRefGoogle Scholar
  16. 16.
    Engler, A. J., F. Rehfeldt, S. Sena, and D. E. Discher. Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Methods Cell Biol. 83:521–545, 2007.CrossRefGoogle Scholar
  17. 17.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.CrossRefGoogle Scholar
  18. 18.
    Farman, G. P., K. Tachampa, R. Mateja, O. Cazorla, A. Lacampagne, and P. P. de Tombe. Blebbistatin: use as inhibitor of muscle contraction. Eur. J. Physiol. 455:995–1005, 2008.CrossRefGoogle Scholar
  19. 19.
    Georges, P. C., and P. A. Janmey. Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98:1547–1553, 2005.CrossRefGoogle Scholar
  20. 20.
    Guo, W. H., M. T. Frey, N. A. Burnham, and Y. L. Wang. Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90:2213–2220, 2006.CrossRefGoogle Scholar
  21. 21.
    Hayes, A. W. Principles and Methods of Toxicology. New York: Raven Press, pp. 1231–1258, 1994.Google Scholar
  22. 22.
    Ingber, D. E. Can cancer be reversed by engineering the tumor microenvironment? Semin. Cancer Biol. 18:356–364, 2008.CrossRefGoogle Scholar
  23. 23.
    Jay, P. Y., P. A. Pham, S. A. Wong, and E. L. Elson. A mechanical function of myosin II in cell motility. J. Cell Sci. 108:387–393, 1995.Google Scholar
  24. 24.
    Jou, T. S., D. B. Stewart, J. Stappert, W. J. Nelson, and J. A. Marrs. Genetic and biochemical dissection of protein linkages in the cadherin–catenin complex. Proc. Natl. Acad. Sci. USA 92:5067–5071, 1995.CrossRefGoogle Scholar
  25. 25.
    Kovacs, M., J. Toth, C. Hetenyi, A. Malnasi-Csizmadia, and J. R. Sellers. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279:35557–35563, 2004.CrossRefGoogle Scholar
  26. 26.
    Kumar, S., and V. M. Weaver. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28:113–127, 2009.CrossRefGoogle Scholar
  27. 27.
    le Duc, Q., Q. Shi, I. Blonk, A. Sonnenberg, N. Wang, D. Leckband, and J. de Rooij. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J. Cell Biol. 189(7):107–115, 2010.Google Scholar
  28. 28.
    Leckband, D. E., Q. le Duc, N. Wang, and J. de Rooij. Mechanotransduction at cadherin-mediated adhesions. Curr. Opin. Cell Biol. 23:523–530, 2011.CrossRefGoogle Scholar
  29. 29.
    Levental, I., P. C. Georges, and P. A. Janmey. Soft biological materials and their impact on cell function. Soft Matter 3:299–306, 2007.CrossRefGoogle Scholar
  30. 30.
    Levental, K. R., H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, S. F. Fong, K. Csiszar, A. Giaccia, W. Weninger, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906, 2009.CrossRefGoogle Scholar
  31. 31.
    Li, D., J. Zhou, L. Wang, M. E. Shin, P. Su, et al. Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J. Cell Biol. 191:631–644, 2010.CrossRefGoogle Scholar
  32. 32.
    Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.CrossRefGoogle Scholar
  33. 33.
    Mason, B. N., A. Starchenko, R. M. Williams, L. J. Bonassar, and C. A. Reinhart-King. Tuning 3D collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater. 9:4635–4644, 2013.CrossRefGoogle Scholar
  34. 34.
    Ochsner, M., M. Textor, V. Vogel, and M. L. Smith. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape. PLoS ONE 5(3):e9445, 2010. doi:10.1371/journal.pone.0009445.CrossRefGoogle Scholar
  35. 35.
    Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.CrossRefGoogle Scholar
  36. 36.
    Pathak, A., and S. Kumar. Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr. Biol. 3(4):267–278, 2011.CrossRefGoogle Scholar
  37. 37.
    Pathak, A., and S. Kumar. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl. Acad. Sci. USA 109(26):10334–10339, 2012.CrossRefGoogle Scholar
  38. 38.
    Pelham, R. J., and Y. L. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94(25):3661–3665, 1997.CrossRefGoogle Scholar
  39. 39.
    Pelham, Jr., J. R., and Y. L. Wang. High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol. Biol. Cell 10:935–945, 1999.CrossRefGoogle Scholar
  40. 40.
    Radmacher, M. Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol. 68:67–90, 2002.CrossRefGoogle Scholar
  41. 41.
    Rosenthal, K. L., W. A. Tompkins, G. L. Frank, P. McCulloch, and W. E. Rawls. Variants of a human colon adenocarcinoma cell line which differ in morphology and carcinoembryonic antigen production. Cancer Res. 37:4024–4030, 1977.Google Scholar
  42. 42.
    Saif, T. On the capillary interaction between solid plates forming menisci on the surface of a liquid. J. Fluid Mech. 473:321–347, 2002.CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93:4453–4461, 2007.CrossRefGoogle Scholar
  44. 44.
    Straight, A. F., A. Cheung, J. Limouze, I. Chen, N. J. Westwood, J. R. Sellers, and T. J. Mitchison. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 229:1743–1747, 2003.CrossRefGoogle Scholar
  45. 45.
    Tang, X., M. Y. Ali, and T. Saif. A novel technique for micro-patterning proteins and cells on polyacrylamide gels. Soft Matter 8:3197–3206, 2012.Google Scholar
  46. 46.
    Tang, X., P. Bajaj, R. Bashir, and T. Saif. How far cardiac cells can see each other mechanically. Soft Matter 7:6151–6158, 2011.CrossRefGoogle Scholar
  47. 47.
    Tang, X., T. Cappa, T. Kuhlenschmidt, M. Kuhlenschmidt, and T. Saif. Specific and non-specific adhesion in cancer cells with various metastatic potentials. In: Mechanobiology of Cell–Cell and Cell–Matrix Interactions, edited by A. W. Johnson, and B. Harley. New York: Springer Science, 2011, pp. 105–122.CrossRefGoogle Scholar
  48. 48.
    Tang, X., T. B. Kuhlenschmidt, J. Zhou, P. Bell, F. Wang, M. S. Kuhlenschmidt, and T. Saif. Mechanical force affects expression of an in vitro metastasis-like phenotype in HCT-8 cells. Biophys. J. 99:2460–2469, 2010.CrossRefGoogle Scholar
  49. 49.
    Tilghman, R. W., C. R. Cowan, J. D. Mih, Y. Koryakina, D. Gioeli, et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS ONE 5(9):e12905, 2010. doi:10.1371/journal.pone.0012905.CrossRefGoogle Scholar
  50. 50.
    Twiss, F., Q. le Duc, S. van der Horst, H. Tabdili, G. van der Krogt, N. Wang, H. Rehmann, S. Huveneers, D. E. Leckband, and J. de Rooij. Vinculin-dependent Cadherin mechanosensing regulates efficient epithelial barrier formation. Biol. Open. 1(11):1128–1140, 2012.CrossRefGoogle Scholar
  51. 51.
    Ulrich, T. A., E. M. de Juan Pardo, and S. Kumar. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69:4167–4174, 2009.CrossRefGoogle Scholar
  52. 52.
    Vermeulen, S. J., E. A. Bruyneel, M. E. Bracke, G. K. De Bruyne, K. M. Vennekens, K. L. Vleminckx, G. J. Berx, F. M. Van Roy, and M. M. Mareel. Transition from the noninvasive to the invasive phenotype and loss of a-Catenin in human colon cancer cells. Cancer Res. 55:4722–4728, 1995.Google Scholar
  53. 53.
    Vermeulen, S. J., T. R. Chen, F. Speleman, F. Nollet, F. M. Van Roy, and M. M. Mareel. Did the four human cancer cell lines DLD-1, HCT-15, HCT-8, and HRT-18 originate from one and the same patient? Cancer Genet. Cytogenet. 107:76–79, 1998.CrossRefGoogle Scholar
  54. 54.
    Vermeulen, S. J., F. Nollet, E. Teugels, K. M. Vennekens, F. Malfait, J. Philippe, F. Speleman, M. E. Bracke, F. M. Van Roy, and M. M. Mareel. The alpha-E-catenin gene (CTNNA1) acts as an invasion-suppressor gene in human colon cancer cells. Oncogene 18:905–915, 1999.CrossRefGoogle Scholar
  55. 55.
    Wang, H. B., M. Dembo, and Y. L. Wang. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell. Physiol. 279:1345–1350, 2000.Google Scholar
  56. 56.
    Wang, Y. L., and R. Pelham. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298:489–496, 1998.CrossRefGoogle Scholar
  57. 57.
    Yamada, Y., F. Katagiri, K. Hozumi, Y. Kikkawa, and M. Nomizu. Cell behavior on protein matrices containing laminin α1 peptide AG73. Biomaterials 32(19):4327–4335, 2011.CrossRefGoogle Scholar
  58. 58.
    Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet 60:24–34, 2005.CrossRefGoogle Scholar
  59. 59.
    Yonemura, S., Y. Wada, T. Watanabe, A. Nagafuchi, and M. Shibata. Alpha-catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12:533–542, 2010.CrossRefGoogle Scholar
  60. 60.
    Yu, W., A. Datta, P. Leroy, L. E. O’Brien, G. Mak, T. S. Jou, et al. β1-integrin orients epithelial polarity via Rac1 and laminin. Mol. Biol. Cell 16(2):433–445, 2005.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  1. 1.Department of Mechanical Science and Engineering, College of EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations