Cellular and Molecular Bioengineering

, Volume 7, Issue 3, pp 379–393

Nanofibrous Electrospun Polymers for Reprogramming Human Cells

  • Travis Cordie
  • Ty Harkness
  • Xin Jing
  • Jared Carlson-Stevermer
  • Hao-Yang Mi
  • Lih-Sheng Turng
  • Krishanu Saha
Article

Abstract

Forced expression of transcription factors epigenetically reprograms somatic cells harvested from routine skin biopsies into induced pluripotent stem cells (iPSCs). Human iPSCs are key resources for drug discovery, regenerative medicine and tissue engineering. Here we developed a materials approach to explore how culture substrates could impact factor-mediated reprogramming of human fibroblasts. A materials library consisting of nanofibrous substrates with randomly oriented and aligned structures was prepared by electrospinning four polymers [polylactic acid (PLA), polycaprolactone (PCL), thermoplastic polyurethane (TPU) and polypropylene carbonate (PPC)] into nanofiber orientations. Adsorbing protein to each substrate permitted robust attachment of fibroblasts to all substrates. Fibroblasts on aligned substrates had elongated nuclei, but after reprogramming factor expression, nuclei became more circular. Reprogramming factors could override the nuclear shape constraints imposed by nanofibrous substrates, and the majority of substrates supported full reprogramming. Early culture on PCL and TPU substrates promoted reprogramming, and TGF-β repressed substrate effects. Partial least squares modeling of the biochemical and biophysical cues within our reprogramming system identified TGF-β and polymer identity as important cues governing cellular reprogramming responses. We believe that our approach of using a nanofibrous materials library can be used to dissect molecular mechanisms of reprogramming and generate novel substrates that enhance epigenetic reprogramming.

Keywords

Pluripotent stem cells Reprogramming Biomaterials Electrospinning Nuclear shape 

Supplementary material

12195_2014_341_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1343 kb)

References

  1. 1.
    Apostolou, E., and K. Hochedlinger. Chromatin dynamics during cellular reprogramming. Nature 502:462–471, 2013.CrossRefGoogle Scholar
  2. 2.
    Armond, J. W., K. Saha, A. A. Rana, C. J. Oates, R. Jaenisch, M. Nicodemi, and S. Mukherjee. A stochastic model dissects cell states in biological transition processes. Sci. Rep. 4:3692, 2014.Google Scholar
  3. 3.
    Barnes, C. P., S. A. Sell, E. D. Boland, D. G. Simpson, and G. L. Bowlin. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 59:1413–1433, 2007.CrossRefGoogle Scholar
  4. 4.
    Beers, J., D. R. Gulbranson, N. George, L. I. Siniscalchi, J. Jones, J. A. Thomson, and G. Chen. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nat. Protoc. 7:2029–2040, 2012.Google Scholar
  5. 5.
    Chen, G., Z. Hou, D. R. Gulbranson, and J. A. Thomson. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell 7:240–248, 2010.CrossRefGoogle Scholar
  6. 6.
    Chen, G., D. R. Gulbranson, Z. Hou, J. M. Bolin, V. Ruotti, M. D. Probasco, K. Smuga-Otto,  S. E. Howden, N. R. Diol, N. E. Propson, R. Wagner, G. O. Lee, J. Antosiewicz-Bourget, J. M. Teng, and J. A. Thomson. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8:424–429, 2011.Google Scholar
  7. 7.
    Craene, B. D., and G. Berx. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13:97–110, 2013.CrossRefGoogle Scholar
  8. 8.
    de Jong, S. SIMPLS: an alternative approach to partial least squares regression. Chemometr. Intell. Lab. Syst. 18:251–263, 1993.CrossRefGoogle Scholar
  9. 9.
    Discher, D. E., D. J. Mooney, and P. W. Zandstra. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677, 2009.CrossRefGoogle Scholar
  10. 10.
    Downing, T. L., J. Soto, C. Morez, T. Houssin, A. Fritz, F. Yuan, J. Chu, S. Patel, D. V. Schaffer, and S. Li. Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12:1154–1162, 2013.Google Scholar
  11. 11.
    Eriksson, L. Multi- and Megavariate Data Analysis, MKS Umetrics AB, 2006.Google Scholar
  12. 12.
    Feng, B., J.-H. Ng, J.-C. D. Heng, and H.-H. Ng. Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4:301–312, 2009.CrossRefGoogle Scholar
  13. 13.
    Gaspar-Maia, A., A. Alajem, E. Meshorer, and M. Ramalho-Santos. Open chromatin in pluripotency and reprogramming. Nat. Rev. Mol. Cell Biol. 12:36–47, 2011.CrossRefGoogle Scholar
  14. 14.
    Graf, T., and T. Enver. Forcing cells to change lineages. Nature 462:587–594, 2009.CrossRefGoogle Scholar
  15. 15.
    Grskovic, M., A. Javaherian, B. Strulovici, and G. Q. Daley. Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat. Rev. Drug Discov. 10:915–929, 2011.Google Scholar
  16. 16.
    Hanna, J. H., K. Saha, and R. Jaenisch. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143:508–525, 2010.CrossRefGoogle Scholar
  17. 17.
    Hanna, J., K. Saha, B. Pando, J. van Zon, C. J. Lengner, M. P. Creyghton, A. van Oudenaarden, and R. Jaenisch. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462:595–601, 2009.Google Scholar
  18. 18.
    Haynes, J., J. Srivastava, N. Madson, T. Wittmann, and D. L. Barber. Dynamic actin remodeling during epithelial–mesenchymal transition depends on increased moesin expression. Mol. Biol. Cell 22:4750–4764, 2011.CrossRefGoogle Scholar
  19. 19.
    Hockemeyer, D., F. Soldner, E. G. Cook, Q. Gao, M. Mitalipova, and R. Jaenisch. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3:346–353, 2008.Google Scholar
  20. 20.
    Jain, N., K. V. Iyer, A. Kumar, and G. V. Shivashankar. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. PNAS 110:11349–11354, 2013.CrossRefGoogle Scholar
  21. 21.
    Jiao, J., Y. Dang, Y. Yang, R. Gao, Y. Zhang, Z. Kou, X. F. Sun, and S. Gao. Promoting reprogramming by FGF2 reveals that the extracellular matrix is a barrier for reprogramming fibroblasts to pluripotency. Stem Cells 31:729–740, 2012.Google Scholar
  22. 22.
    Kim, I. L., S. Khetan, B. M. Baker, C. S. Chen, and J. A. Burdick. Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues. Biomaterials 34:5571–5580, 2013.CrossRefGoogle Scholar
  23. 23.
    Kohen, N. T., L. E. Little, and K. E. Healy. Characterization of Matrigel interfaces during defined human embryonic stem cell culture. Biointerphases 4:69–79, 2009.CrossRefGoogle Scholar
  24. 24.
    Li, R., J. Liang, S. Ni, T. Zhou, X. Qing, H. Li, W. He, J. Chen, F. Li, Q. Zhuang, B. Qin, J. Xu, W. Li, J. Yang, Y. Gan, D. Qin, S. Feng, H. Song, D. Yang, B. Zhang, L. Zeng, L. Lai, M. A. Esteban, and D. Pei. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7:51–63, 2010.Google Scholar
  25. 25.
    Liu, X., H. Sun, J. Qi, L. Wang, S. He, J. Liu, C. Feng, C. Chen, W. Li, Y. Guo, D. Qin, G. Pan, J. Chen, D. Pei, and H. Zheng. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT–MET mechanism for optimal reprogramming. Nat. Cell Biol. 15:829–838, 2013.Google Scholar
  26. 26.
    Mali, P., L. Yang, K. M. Esvelt, J. Aach, M. Guell, J. E. DiCarlo, J. E. Norville, and G. M. Church. RNA-guided human genome engineering via Cas9. Science 339:823–826, 2013.Google Scholar
  27. 27.
    Mattout, A., A. Biran, and E. Meshorer. Global epigenetic changes during somatic cell reprogramming to iPS cells. J. Mol. Cell Biol. 3:341–350, 2011.CrossRefGoogle Scholar
  28. 28.
    McNulty, J. D., T. Klann, J. Sha, M. Salick, G. T. Knight, L. S. Turng, and R. S. Ashton. High-precision robotic microcontact printing (R-μCP) utilizing a vision guided selectively compliant articulated robotic arm. Lab Chip 14:1923–1930, 2014.Google Scholar
  29. 29.
    Mi, H.-Y., X. Jing, B. R. Jacques, L.-S. Turng, and X.-F. Peng. Characterization and properties of electrospun thermoplastic polyurethane blend fibers: effect of solution rheological properties on fiber formation. J. Mater. Res. 28:2339–2350, 2013.CrossRefGoogle Scholar
  30. 30.
    Ohgushi, M., M. Matsumura, M. Eiraku, K. Murakami, T. Aramaki, A. Nishiyama, K. Muguruma, T. Nakano, H. Suga, M. Ueno, T. Ishizaki, H. Suemori, S. Narumiya, H. Niwa, and Y. Sasai. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell 7:225–239, 2010.Google Scholar
  31. 31.
    Quintanilla, R. H., Jr., J. S. T. Asprer, C. Vaz, V. Tanavde, and U. Lakshmipathy. CD44 is a negative cell surface marker for pluripotent stem cell identification during human fibroblast reprogramming. PLoS ONE 9:e85419, 2014.Google Scholar
  32. 32.
    Rais, Y., A. Zviran, S. Geula, O. Gafni, E. Chomsky, S. Viukov, A. A. Mansour, I. Caspi, V. Krupalnik, M. Zerbib, I. Maza, N. Mor, D. Baran, L. Weinberger, D. A. Jaitin, D. Lara-Astiaso, R. Blecher-Gonen, Z. Shipony, Z. Mukamel, T. Hagai, S. Gilad, D. Amann-Zalcenstein, A. Tanay, I. Amit, N. Novershtern, and J. H. Hanna. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502:65–70, 2013.Google Scholar
  33. 33.
    Rnjak-Kovacina, J., S. G. Wise, Z. Li, P. K. Maitz, C. J. Young, Y. Wang, and A. S. Weiss. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials 32:6729–6736, 2011.Google Scholar
  34. 34.
    Saha, K., and R. Jaenisch. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5:584–595, 2009.CrossRefGoogle Scholar
  35. 35.
    Saha, K., Y. Mei, C. M. Reisterer, N. K. Pyzocha, J. Yang, J. Muffat, M. C. Davies, M. R. Alexander, R. Langer, D. G. Anderson, and R. Jaenisch. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. PNAS 108:18714–18719, 2011.Google Scholar
  36. 36.
    Samavarchi-Tehrani, P., A. Golipour, L. David, H. K. Sung, T. A. Beyer, A. Datti, K. Woltjen, A. Nagy, J. L. Wrana. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7:64–77, 2010.Google Scholar
  37. 37.
    Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9:676–682, 2012.Google Scholar
  38. 38.
    Shahbazian, M. D., and M. Grunstein. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76:75–100, 2007.CrossRefGoogle Scholar
  39. 39.
    Shinagawa, T., T. Takagi, D. Tsukamoto, C. Tomaru, L. M. Huynh, P. Sivaraman, T. Kumarevel, K. Inoue, R. Nakato, Y. Katou, T. Sado, S. Takahashi, A. Ogura, K. Shirahige, and S. Ishii. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 14:217–227, 2014.Google Scholar
  40. 40.
    Takahashi, K., and S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676, 2006.CrossRefGoogle Scholar
  41. 41.
    Takahashi, K., and S. Yamanaka. Induced pluripotent stem cells in medicine and biology. Development 140:2457–2461, 2013.CrossRefGoogle Scholar
  42. 42.
    Teo, W., and S. Ramakrishna. A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89, 2006.CrossRefGoogle Scholar
  43. 43.
    Wang, X., M. R. Salick, X. Wang, T. Cordie, W. Han, Y. Peng, Q. Li, and L. S. Turng. Poly (ε-caprolactone) nanofibers with a self-induced nanohybrid Shish–Kebab structure mimicking collagen fibrils. Biomacromolecules 14:3557–3569, 2013.Google Scholar
  44. 44.
    Watanabe, K., M. Ueno, D. Kamiya, A. Nishiyama, M. Matsumura, T. Wataya, J. B. Takahashi, S. Nishikawa, S. Nishikawa, K. Muguruma, and Y. Sasai. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25:681–686, 2007.Google Scholar
  45. 45.
    Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, I. I. Slukvin, and J. A. Thomson. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920, 2007.Google Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Travis Cordie
    • 1
    • 2
  • Ty Harkness
    • 1
  • Xin Jing
    • 2
  • Jared Carlson-Stevermer
    • 1
  • Hao-Yang Mi
    • 2
  • Lih-Sheng Turng
    • 1
    • 2
  • Krishanu Saha
    • 1
  1. 1.Department of Biomedical Engineering and Wisconsin Institute for DiscoveryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Mechanical Engineering and Wisconsin Institute for DiscoveryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations