Cellular and Molecular Bioengineering

, Volume 7, Issue 3, pp 460–472 | Cite as

Generation of Multi-scale Vascular Network System Within 3D Hydrogel Using 3D Bio-printing Technology

  • Vivian K. Lee
  • Alison M. Lanzi
  • Haygan Ngo
  • Seung-Schik Yoo
  • Peter A. Vincent
  • Guohao DaiEmail author


Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1 mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns.


3D bio-printing Capillary Vasculogenesis Angiogenesis Vascular lumen Hydrogel 



This work was supported by NIHR01HL118245, NSF CBET-1263455, CBET-1350240 and New York Capital Region Research Alliance grant.

Conflict of interest

Vivian K. Lee, Alison M. Lanzi, Haygan, Ngo, Seung-SchikYoo, Peter A. Vincent, Guohao Dai declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.


  1. 1.
    Adams, R. H., and K. Alitalo. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8:464–478, 2007.CrossRefGoogle Scholar
  2. 2.
    Boland, T., V. Mironov, A. Gutowska, E. A. Roth, and R. R. Markwald. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat. Rec. A 272:497–502, 2003.CrossRefGoogle Scholar
  3. 3.
    Borenstein, J. T., E. L. I. J. Weinberg, B. K. Orrick, C. Sundback, M. R. Kaazempur-mofrad, and J. P. Vacanti. Microfabrication of three-dimensional engineered scaffolds. Tissue Eng. 13:1837–1844, 2007.CrossRefGoogle Scholar
  4. 4.
    Carmeliet, P. Blood vessels and nerves: common signals, pathways and diseases. Nature 4:710–720, 2003.Google Scholar
  5. 5.
    Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9:653–660, 2003.CrossRefGoogle Scholar
  6. 6.
    Carmeliet, P., and R. K. Jain. Angiogenesis in cancer and other diseases. Nature 407:249–257, 2000.CrossRefGoogle Scholar
  7. 7.
    Carmeliet, P., and R. K. Jain. Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307, 2011.CrossRefGoogle Scholar
  8. 8.
    Chen, X., et al. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. Part A 15:1363–1371, 2009.CrossRefGoogle Scholar
  9. 9.
    Chiu, D. T., et al. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad. Sci. U.S.A. 97:2408–2413, 2000.CrossRefGoogle Scholar
  10. 10.
    Chrobak, K. M., D. R. Potter, and J. Tien. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71:185–196, 2006.CrossRefGoogle Scholar
  11. 11.
    Conway, E. M., D. Collen, and P. Carmeliet. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49:507–521, 2001.CrossRefGoogle Scholar
  12. 12.
    Cui, X., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.CrossRefGoogle Scholar
  13. 13.
    Davis, G. E., and K. J. Bayless. An integrin and rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation 10:27–44, 2003.CrossRefGoogle Scholar
  14. 14.
    Davis, G. E., W. Koh, and A. N. Stratman. Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Res. C 81:270–285, 2007.CrossRefGoogle Scholar
  15. 15.
    Davis, G. E., and D. R. Senger. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97:1093–1107, 2005.CrossRefGoogle Scholar
  16. 16.
    Fidkowski, C., M. R. Kaazempur-Mofrad, J. Borenstein, J. P. Vacanti, R. Langer, and Y. Wang. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng. 11:302–309, 2005.CrossRefGoogle Scholar
  17. 17.
    Ghajar, C. M., K. S. Blevins, C. C. W. Hughes, S. C. George, and A. J. Putnam. Mesenchymal stem cells enhance angiogenesis early matrix metalloproteinase upregulation. Tissue Eng. 12:2875–2888, 2006.CrossRefGoogle Scholar
  18. 18.
    Grinnell, F. Fibroblast–collagen–matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol. 10:362–365, 2000.CrossRefGoogle Scholar
  19. 19.
    Grinnell, F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13:264–269, 2003.CrossRefGoogle Scholar
  20. 20.
    Hsu, Y.-H., M. L. Moya, P. Abiri, C. C. W. Hughes, S. C. George, and A. P. Lee. Full range physiological mass transport control in 3D tissue cultures. Lab Chip 13:81–89, 2013.CrossRefGoogle Scholar
  21. 21.
    Iruela-Arispe, M. L., and G. E. Davis. Cellular and molecular mechanisms of vascular lumen formation. Dev. Cell 16:222–231, 2009.CrossRefGoogle Scholar
  22. 22.
    Kachgal, S., and A. J. Putnam. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis 14:47–59, 2011.CrossRefGoogle Scholar
  23. 23.
    Kamei, M., W. B. Saunders, K. J. Bayless, L. Dye, G. E. Davis, and B. M. Weinstein. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456, 2006.CrossRefGoogle Scholar
  24. 24.
    Khademhosseini, A., R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 103:2480–2487, 2006.CrossRefGoogle Scholar
  25. 25.
    Koh, W., A. N. Stratman, A. Sacharidou, and G. E. Davis. In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol. 443:83–101, 2008.CrossRefGoogle Scholar
  26. 26.
    Langer, R. S., and J. P. Vacanti. Tissue engineering: the challenges ahead. Sci. Am. 280:86–89, 1999.CrossRefGoogle Scholar
  27. 27.
    Lee, V., and G. Dai. Micro and nanotechnology in vascular regeneration. In: Tissue and Organ Regeneration—Advances in Micro- and Nanotechnology, edited by G. L. Zhang, T. Webster, and A. Khademhosseini. Singapore: Pan Stanford Publishing, 2014.Google Scholar
  28. 28.
    Lee, W., et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595, 2009.CrossRefGoogle Scholar
  29. 29.
    Lee, W., et al. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol. Bioeng. 105:1178–1186, 2010.Google Scholar
  30. 30.
    Lee, V. K., et al. Design and fabrication of human skin by 3D bioprinting. Tissue Eng. Part C 20:473–484, 2014.Google Scholar
  31. 31.
    Leong, M. F., et al. Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat. Commun. 4:2353, 2013.CrossRefGoogle Scholar
  32. 32.
    Li, Y.-S. J., J. H. Haga, and S. Chien. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38:1949–1971, 2005.CrossRefGoogle Scholar
  33. 33.
    Liu Tsang, V., et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 21:790–801, 2007.CrossRefGoogle Scholar
  34. 34.
    Miller, J. S., et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.Google Scholar
  35. 35.
    Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.CrossRefGoogle Scholar
  36. 36.
    Moya, M. L., Y. Hsu, A. P. Lee, C. C. W. Hughes, and S. C. George. In vitro perfused human capillary networks. Tissue Eng. Part C 19:730–737, 2013.CrossRefGoogle Scholar
  37. 37.
    Nahmias, Y., R. E. Schwartz, C. M. Verfaillie, and D. J. Odde. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng. 92:129–136, 2005.CrossRefGoogle Scholar
  38. 38.
    Nakatsu, M. N., and C. C. W. Hughes. An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol. 443:65–82, 2008.CrossRefGoogle Scholar
  39. 39.
    Nakatsu, M. N., et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc. Res. 66:102–112, 2003.CrossRefGoogle Scholar
  40. 40.
    Nguyen, D.-H. T., et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl. Acad. Sci. USA 110:6712–6717, 2013.CrossRefGoogle Scholar
  41. 41.
    Ozturk, M. S., V. K. Lee, L. Zhao, G. Dai, and X. Intes. Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue. J. Biomed. Opt. 18:100501, 2013.CrossRefGoogle Scholar
  42. 42.
    Potente, M., H. Gerhardt, and P. Carmeliet. Basic and therapeutic aspects of angiogenesis. Cell 146:873–887, 2011.CrossRefGoogle Scholar
  43. 43.
    Price, G. M., and J. Tien. Chapter 17: methods for forming human microvascular tubes in vitro and measuring their macromolecular permeability. In: Biological Microarrays: Methods and Protocols, Methods in Molecular Biology, edited by A. Khademhosseini, K.-Y. Suh, and M. Zourob. Totowa, NJ: Humana Press, 2011, pp. 281–293.CrossRefGoogle Scholar
  44. 44.
    Raghavan, S., C. M. Nelson, J. D. Baranski, E. Lim, and C. S. Chen. Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng. 16:2255–2263, 2010.CrossRefGoogle Scholar
  45. 45.
    Roth, E. A., T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing for high-throughput cell patterning. Biomaterials 25:3707–3715, 2004.CrossRefGoogle Scholar
  46. 46.
    Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26:434–441, 2008.CrossRefGoogle Scholar
  47. 47.
    Saunders, W. B., et al. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J. Cell Biol. 175:179–191, 2006.CrossRefMathSciNetGoogle Scholar
  48. 48.
    Sekine, H., et al. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat. Commun. 4:1399, 2013.CrossRefMathSciNetGoogle Scholar
  49. 49.
    Shin, Y., et al. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab Chip 11:2175–2181, 2011.CrossRefGoogle Scholar
  50. 50.
    Stratman, A. N., K. M. Malotte, R. D. Mahan, M. J. Davis, and G. E. Davis. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114:5091–5101, 2009.CrossRefGoogle Scholar
  51. 51.
    Wong, K. H. K., J. M. Chan, R. D. Kamm, and J. Tien. Microfluidic models of vascular functions. Annu. Rev. Biomed. Eng. 14:205–230, 2012.CrossRefGoogle Scholar
  52. 52.
    Xu, T., J. Jin, C. Gregory, J. J. J. J. Hickman, and T. Boland. Inkjet printing of viable mammalian cells. Biomaterials 26:93–99, 2005.CrossRefGoogle Scholar
  53. 53.
    Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash. Vascular-specific growth factors and blood vessel formation. Nature 14:407, 2000.Google Scholar
  54. 54.
    Zhao, L., V. K. Lee, S–. S. Yoo, G. Dai, and X. Intes. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials 33:5325–5332, 2012.CrossRefGoogle Scholar
  55. 55.
    Zheng, Y., et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. USA 109:9342–9347, 2012.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Vivian K. Lee
    • 1
  • Alison M. Lanzi
    • 1
  • Haygan Ngo
    • 1
  • Seung-Schik Yoo
    • 3
  • Peter A. Vincent
    • 2
  • Guohao Dai
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Center for Cardiovascular SciencesAlbany Medical CollegeAlbanyUSA
  3. 3.Department of Radiology, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations