Effects of Migrating Cell-Induced Matrix Reorganization on 3D Cancer Cell Migration


The migration of cells is fundamental to a number of physiological/pathological processes, ranging from embryonic development, tissue regeneration to cancer metastasis. Current research on cell migration is largely based on simplified in vitro models that assume a homogeneous microenvironment and overlook the modification of extracellular matrix (ECM) by the cells. To address this shortcoming, we developed a nested three-dimensional (3D) collagen hydrogel model mimicking the connective tissue confronted by highly malignant breast cancer cells, MDA-MB-231. Strikingly, our findings revealed two distinct cell migration patterns: a rapid and directionally persistent collective migration of the leader cells and a more randomized migration in the regions that have previously been significantly modified by cells. The cell-induced modifications, which typically include clustering and alignment of fibers, effectively segmented the matrix into smaller sub-regions. Our results suggest that in an elastic 3D matrix, the presence of adjacent cells that have modified the matrix may in fact become physical hurdle to a migrating cell. Furthermore, our study emphasizes the need for a micromechanical understanding in the context of cancer invasion that allows for cell-induced modification of ECM and a heterogeneous cell migration.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1.

    Bloom, R. J., J. P. George, A. Celedon, S. X. Sun, and D. Wirtz. Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys. J. 95:4077–4088, 2008.

  2. 2.

    Borau, C., R. D. Kamm, and J. M. Garcia-Aznar. Mechano-sensing and cell migration: a 3D model approach. Phys. Biol. 8:066008, 2011.

  3. 3.

    Brightman, A. O., B. P. Rajwa, J. E. Sturgis, M. E. McCallister, J. P. Robinson, and S. L. Voytik-Harbin. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 54:222–234, 2000.

  4. 4.

    Broedersz, C. P., K. E. Kasza, L. M. Jawerth, S. Munster, D. A. Weitz, and F. C. MacKintosh. Measurement of nonlinear rheology of cross-linked biopolymer gels. Soft Matter 6:4120–4127, 2010.

  5. 5.

    Broedersz, C. P., M. Sheinman, and F. C. MacKintosh. Filament-length-controlled elasticity in 3D fiber networks. Phys. Rev. Lett. 108:078102, 2012.

  6. 6.

    Castello-Cros, R., D. R. Khan, J. Simons, M. Valianou, and E. Cukierman. Staged stromal extracellular 3D matrices differentially regulate breast cancer cell responses through PI3K and beta1-integrins. BMC Cancer 9:94, 2009.

  7. 7.

    Condeelis, J., and J. E. Segall. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3:921–930, 2003.

  8. 8.

    Decaestecker, C., O. Debeir, P. Van Ham, and R. Kiss. Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration. Med. Res. Rev. 27:149–176, 2007.

  9. 9.

    Dickinson, R. B., S. Guido, and R. T. Tranquillo. Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann. Biomed. Eng. 22:342–356, 1994.

  10. 10.

    Entschladen, F., T. L. Drell, K. Lang, K. Masur, D. Palm, P. Bastian, B. Niggemann, and K. S. Zaenker. Analysis methods of human cell migration. Exp. Cell Res. 307:418–426, 2005.

  11. 11.

    Even-Ram, S., and K. M. Yamada. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17:524–532, 2005.

  12. 12.

    Friedl, P. Dynamic imaging of cellular interactions with extracellular matrix. Histochem. Cell Biol. 122:183–190, 2004.

  13. 13.

    Friedl, P., and K. Wolf. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res. 68:7247–7249, 2008.

  14. 14.

    Fukata, Y., M. Amano, and K. Kaibuchi. Rho–Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol. Sci. 22:32–39, 2001.

  15. 15.

    Gaggioli, C., S. Hooper, C. Hidalgo-Carcedo, R. Grosse, J. F. Marshall, K. Harrington, and E. Sahai. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9:1392–1400, 2007.

  16. 16.

    Goetz, J. G., S. Minguet, I. Navarro-Lérida, J. J. Lazcano, R. Samaniego, E. Calvo, M. Tello, T. Osteso-Ibáñez, T. Pellinen, A. Echarri, A. Cerezo, A. J. P. Klein-Szanto, R. Garcia, P. J. Keely, P. Sánchez-Mateos, E. Cukierman, and M. A. Del Pozo. Biomechanical remodeling of the microenvironment by stromal Caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163, 2011.

  17. 17.

    Grinnell, F., L. B. Rocha, C. Iucu, S. Rhee, and H. Jiang. Nested collagen matrices: a new model to study migration of human fibroblast populations in three dimensions. Exp. Cell Res. 312:86–94, 2006.

  18. 18.

    Han, J., H. Chang, O. Giricz, G. Y. Lee, F. L. Baehner, J. W. Gray, M. J. Bissell, P. A. Kenny, and B. Parvin. Molecular predictors of 3D morphogenesis by breast cancer cell lines in 3D culture. PLoS Comput. Biol. 6:e1000684, 2010.

  19. 19.

    Hanahan, D., and R. A. Weinberg. The hallmarks of cancer. Cell 100:57–70, 2000.

  20. 20.

    Harjanto, D., and M. H. Zaman. Modeling extracellular matrix reorganization in 3D environments. PLoS ONE 8:e52509, 2013.

  21. 21.

    Jones, P. A., and Y. A. De Clerck. Extracellular matrix destruction by invasive tumor cells. Cancer Metastasis Rev. 1:289–317, 1982.

  22. 22.

    Junkin, M., and P. K. Wong. Probing cell migration in confined environments by plasma lithography. Biomaterials 32:1848–1855, 2011.

  23. 23.

    Kenny, P. A., G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 1:84–96, 2007.

  24. 24.

    Kim, A., N. Lakshman, and W. M. Petroll. Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase. Exp. Cell Res. 312:3683–3692, 2006.

  25. 25.

    Koch, T. M., S. Münster, N. Bonakdar, J. P. Butler, and B. Fabry. 3D traction forces in cancer cell invasion. PLoS ONE 7:e33476, 2012.

  26. 26.

    Kolodney, M. S., and E. L. Elson. Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J. Biol. Chem. 268:23850–23855, 1993.

  27. 27.

    Kurniawan, N. A., S. Enemark, and R. Rajagopalan. The role of structure in the nonlinear mechanics of cross-linked semiflexible polymer networks. J. Chem. Phys. 136:065101, 2012.

  28. 28.

    Kurniawan, N. A., L. H. Wong, and R. Rajagopalan. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks. Biomacromolecules 13:691–698, 2012.

  29. 29.

    Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.

  30. 30.

    Menezes, G. C., M. Miron-Mendoza, C. H. Ho, H. Jiang, and F. Grinnell. Oncogenic Ras-transformed human fibroblasts exhibit differential changes in contraction and migration in 3D collagen matrices. Exp. Cell Res. 314:3081–3091, 2008.

  31. 31.

    Menon, S., and K. A. Beningo. Cancer cell invasion is enhanced by applied mechanical stimulation. PLoS ONE 6:e17277, 2011.

  32. 32.

    Miller, E. D., K. Li, T. Kanade, L. E. Weiss, L. M. Walker, and P. G. Campbell. Spatially directed guidance of stem cell population migration by immobilized patterns of growth factors. Biomaterials 32:2775–2785, 2011.

  33. 33.

    Miron-Mendoza, M., J. Seemann, and F. Grinnell. Collagen fibril flow and tissue translocation coupled to fibroblast migration in 3D collagen matrices. Mol. Biol. Cell 19:2051–2058, 2008.

  34. 34.

    Nelson, C. M., and M. J. Bissell. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin. Cancer Biol. 15:342–352, 2005.

  35. 35.

    Packard, B. Z., V. V. Artym, A. Komoriya, and K. M. Yamada. Direct visualization of protease activity on cells migrating in three-dimensions. Matrix Biol. 28:3–10, 2009.

  36. 36.

    Petroll, W. M., and L. Ma. Direct, dynamic assessment of cell-matrix interactions inside fibrillar collagen lattices. Cell Motil. Cytoskeleton 55:254–264, 2003.

  37. 37.

    Petroll, W. M., L. Ma, and J. V. Jester. Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts. J. Cell Sci. 116:1481–1491, 2003.

  38. 38.

    Provenzano, P. P., D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6:11, 2008.

  39. 39.

    Provenzano, P. P., D. R. Inman, K. W. Eliceiri, S. M. Trier, and P. J. Keely. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95:5374–5384, 2008.

  40. 40.

    Riento, K., and A. J. Ridley. Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 4:446–456, 2003.

  41. 41.

    Sahai, E., and C. J. Marshall. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5:711–719, 2003.

  42. 42.

    Scanlon, E. F., and S. Murthy. The process of metastasis. CA Cancer J. Clin. 41:301–305, 1991.

  43. 43.

    Schedin, P., and P. J. Keely. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3:a003228, 2011.

  44. 44.

    Shieh, A. C., H. A. Rozansky, B. Hinz, and M. A. Swartz. Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res. 71:790–800, 2011.

  45. 45.

    Sporn, M. B. The war on cancer. Lancet 347:1377–1381, 1996.

  46. 46.

    Vishwanath, M., L. Ma, C. A. Otey, J. V. Jester, and W. M. Petroll. Modulation of corneal fibroblast contractility within fibrillar collagen matrices. Invest. Ophthalmol. Vis. Sci. 44:4724–4735, 2003.

  47. 47.

    Wirtz, D., K. Konstantopoulos, and P. C. Searson. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11:512–522, 2011.

  48. 48.

    Wolf, K., I. Mazo, H. Leung, K. Engelke, U. H. von Andrian, E. I. Deryugina, A. Y. Strongin, E. B. Brocker, and P. Friedl. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160:267–277, 2003.

  49. 49.

    Wolf, K., Y. I. Wu, Y. Liu, J. Geiger, E. Tam, C. Overall, M. S. Stack, and P. Friedl. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9:893–904, 2007.

  50. 50.

    Wolf, K., S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20:931–941, 2009.

  51. 51.

    Wong, L. H., N. A. Kurniawan, H.-P. Too, and R. Rajagopalan. Spatially resolved microrheology of heterogeneous biopolymer hydrogels using covalently bound microspheres. Biomech. Model. Mechanobiol. 2013. doi:10.1007/s10237-013-0538-4.

  52. 52.

    Yu, X., and L. M. Machesky. Cells assemble invadopodia-like structures and invade into matrigel in a matrix metalloprotease dependent manner in the circular invasion assay. PLoS ONE 7:e30605, 2012.

  53. 53.

    Zaman, M. H. The role of engineering approaches in analysing cancer invasion and metastasis. Nat. Rev. Cancer 13:596–603, 2013.

Download references


Supports provided by the Global Enterprise for Micro-Mechanics and Molecular Medicine (GEM4) and the NUS Graduate School for Integrative Sciences and Engineering are gratefully acknowledged.

Conflict of interest

W. Sun, N. A. Kurniawan, A. P. Kumar, R. Rajagopalan, and C. T. Lim declare that they have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Correspondence to Nicholas Agung Kurniawan.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic supplementary material

Movie S1. Migrating cells (red) in 3D collagen (green) projected to the X–Y plane on the 12th day of growth, when the inner gel was on the top of the current view. Notice the cell on the right was moving rapidly while actively reorganizing the collagen network. Time interval between each frame = 10 min, scale bar = 50 μm.

Movie S2. Cell (red) migration in 3D collagen (green) projected to the X–Y plane on the 12th day of growth. Notice the dynamics of the collagen fibers between the two cells the failed collagen bundling and the subsequent stop of the movement of the bottom cell. Time interval between each frame = 5 min, scale bar = 50 μm.

Movie S3. Cell (red) migration in 3D collagen (green) projected to the X–Y plane on the 12th day of growth, when the inner gel was to the right of the current view. A typical cell that is migrating using mesenchymal strategy is pointed out by the white arrow, while a typical cell that is entrapped by the collagen fibers surrounded by neighbor cells is indicated by the white arrow-head. Time interval between each frame = 10 min.

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 1778 kb)

Supplementary material 3 (MPG 4846 kb)

Supplementary material 4 (MPG 4652 kb)

Supplementary material 1 (WMV 1778 kb)

Supplementary material 2 (AVI 3096 kb)

Supplementary material 3 (MPG 4846 kb)

Supplementary material 4 (MPG 4652 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, W., Kurniawan, N.A., Kumar, A.P. et al. Effects of Migrating Cell-Induced Matrix Reorganization on 3D Cancer Cell Migration. Cel. Mol. Bioeng. 7, 205–217 (2014).

Download citation


  • Cancer invasion
  • 3D extracellular matrix
  • Collective cell migration
  • Matrix remodeling
  • Cell contraction