Cellular and Molecular Bioengineering

, Volume 7, Issue 1, pp 45–57 | Cite as

Target-Bound Generated Pharmacophore Model to Improve the Pharmacophore-Based Virtual Screening: Identification of G-Protein Coupled Human CCR2 Receptors Inhibitors as Anti-Inflammatory Drugs

  • Adam A. Skelton
  • Yushir R. Maharaj
  • Mahmoud E. S. Soliman


Pharmacophore-based virtual screening is being widely used to discover new drug candidates. Building a pharmacophore model based on a known inhibitor that is unbound to the target could be misleading and result in mining for the wrong hits. Results presented herein confirm that pharmacophore models based on unbound and bound ligand confirmations produce significantly, structurally different compound libraries and, consequently, change the outcome of the virtual screening. To further verify our findings, molecular dynamics and extensive post-dynamic analysis are performed for the best retrieved hits from each approach; these are the unbound and bound ligand pharmacophore-generated libraries. In this report, the proposed target-bound pharmacophore model is used to discover potential G-protein coupled CCR2 receptor inhibitors as potential anti-inflammatory drugs. Herein, various molecular modeling approaches are adopted including homology modeling, molecular docking, lipid bilayer molecular dynamics simulations and per-residue interaction energy decomposition analysis. The current study highlights some critical aspects in the pharmacophore-based virtual screening as a powerful tool in the drug discovery and development machinery.


Homology modeling Pharmacophore-based virtual screening Molecular dynamic Lipid bilayer modeling 



The authors would like to thank the School of Health Sciences, UKZN for financial support and the Center for High Performance Computing ( for computational resources.


  1. 1.
    Bajorath, J. Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1:882–894, 2002.CrossRefGoogle Scholar
  2. 2.
    Berendsen, H. J. C., et al. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81:3684–3690, 1984.CrossRefGoogle Scholar
  3. 3.
    Carter, P. H. Progress in the discovery of CC chemokine receptor 2 antagonists, 2009–2012. Expert Opin. Ther. Pat. 23(5):549–568, 2013.CrossRefGoogle Scholar
  4. 4.
    Case, D. A., et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26(16):1668–1688, 2005.CrossRefGoogle Scholar
  5. 5.
    Cieplak, P., et al. Application of the multimolecule and multiconformational RESP methodology to biopolymers: charge derivation for DNA, RNA, and proteins. J. Comput. Chem. 16(11):1357–1377, 1995.CrossRefGoogle Scholar
  6. 6.
    Duan, Y., et al. Point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24:1999–2012, 2003.CrossRefGoogle Scholar
  7. 7.
    Eckert, H., and J. Bajorath. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov. Today 12:225–233, 2007.CrossRefGoogle Scholar
  8. 8.
    Essmann, U., et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103(19):8577–8593, 1995.CrossRefGoogle Scholar
  9. 9.
    Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al. Gaussian 03, Revision E.01. Wallingford, CT: Gaussian Inc., 2004.Google Scholar
  10. 10.
    Guner, O. F. History and evolution of the pharmacophore concept in computer-aided drug design. Curr. Top. Med. Chem. 2(12):1321–1332, 2002.CrossRefGoogle Scholar
  11. 11.
    Guner, O., O. Clement, and Y. Kurogi. Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances. Curr. Med. Chem. 11(22):2991–3005, 2004.CrossRefGoogle Scholar
  12. 12.
    Halgren, T. A. MMFFVI. MMFF94s option for energy minimization studies. J. Comput. Chem. 20:720–729, 1999.CrossRefGoogle Scholar
  13. 13.
    Hall, S. E., et al. Elucidation of binding sites of dual antagonists in the human chemokine receptors CCR2 and CCR5. Mol. Pharmacol. 75(6):1325–1336, 2009.CrossRefGoogle Scholar
  14. 14.
    Halperin, I., et al. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47:409–443, 2002.CrossRefGoogle Scholar
  15. 15.
    Hawkins, P. C. D., et al. Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J. Chem. Inf. Model. 50:572–584, 2010.CrossRefGoogle Scholar
  16. 16.
    Hecker, E. A., et al. Use of catalyst pharmacophore models for screening of large combinatorial libraries. J. Chem. Inf. Comput. Sci. 42(5):1204–1211, 2002.CrossRefGoogle Scholar
  17. 17.
    Huey, R., et al. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 28(6):1145–1152, 2007.CrossRefGoogle Scholar
  18. 18.
    Ibarra, J. M., et al. CD8 alpha(+) dendritic cells improve collagen-induced arthritis in CC chemokine receptor (CCR)-2 deficient mice. Immunobiology 216(9):971–978, 2011.CrossRefGoogle Scholar
  19. 19.
    Jaen, J. C., J. P. Powers, and T. Sullivan. Type-2 diabetes and associated comorbidities as an inflammatory syndrome. In: Annual Reports in Medicinal Chemistry, Vol. 47, edited by M. C. Desai. San Diego: Elsevier, 2012, pp. 159–175.Google Scholar
  20. 20.
    Jain, A. N. Virtual screening in lead discovery and optimization. Curr. Opin. Drug Discov. Dev. 7:396–403, 2004.Google Scholar
  21. 21.
    Jorgensen, W. L., et al. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–935, 1983.CrossRefGoogle Scholar
  22. 22.
    Kitchen, D. B., et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3:935–949, 2004.CrossRefGoogle Scholar
  23. 23.
    Klebe, G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov. Today 11:580–594, 2006.CrossRefGoogle Scholar
  24. 24.
    Koes, D. R., and C. J. Camacho. ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res. 40(W1):W409–W414, 2012.CrossRefGoogle Scholar
  25. 25.
    Lipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44(1):235–249, 2000.CrossRefGoogle Scholar
  26. 26.
    Morris, G. M., et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19(14):1639–1662, 1998.CrossRefGoogle Scholar
  27. 27.
    Pettersen, E. F., et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13):1605–1612, 2004.CrossRefGoogle Scholar
  28. 28.
    Ruiz-Palmero, I., et al. G protein-coupled estrogen receptor is required for the neuritogenic mechanism of 17 beta-estradiol in developing hippocampal neurons. Mol. Cell. Endocrinol. 372(1–2):105–115, 2013.CrossRefGoogle Scholar
  29. 29.
    Ryckaert, J. P. C., G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23:327–341, 1977.CrossRefGoogle Scholar
  30. 30.
    Sanner, M. F. Python: a programming language for software integration and development. J. Mol. Graph. Model. 17(1):57–61, 1999.Google Scholar
  31. 31.
    Sato, W., et al. CCR2(+)CCR5(+) T cells produce matrix metalloproteinase-9 and osteopontin in the pathogenesis of multiple sclerosis. J. Immunol. 189(10):5057–5065, 2012.CrossRefGoogle Scholar
  32. 32.
    Shoichet, B. K. Virtual screening of chemical libraries. Nature 432:862–865, 2004.CrossRefGoogle Scholar
  33. 33.
    Singh, R., A. Balupuri, and M. E. Sobhia. Development of 3D-pharmacophore model followed by successive virtual screening, molecular docking and ADME studies for the design of potent CCR2 antagonists for inflammation-driven diseases. Mol. Simul. 39(1):49–58, 2013.CrossRefGoogle Scholar
  34. 34.
    Singh, R., and M. E. Sobhia. Structure prediction and molecular dynamics simulations of a G-protein coupled receptor: human CCR2 receptor. J. Biomol. Struct. Dyn. 31(7):694–715, 2012.CrossRefGoogle Scholar
  35. 35.
    Sobhia, M. E., et al. Rational design of CCR2 antagonists: a survey of computational studies. Expert Opin. Drug Discov. 5(6):543–557, 2010.CrossRefGoogle Scholar
  36. 36.
    Stahura, F. L., and J. Bajorath. New methodologies for ligand-based virtual screening. Curr. Pharm. Des. 11:1189–1202, 2005.CrossRefGoogle Scholar
  37. 37.
    Thomsen, R., and M. H. Christensen. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49(11):3315–3321, 2006.CrossRefGoogle Scholar
  38. 38.
    Toba, S., et al. Using pharmacophore models to gain insight into structural binding and virtual screening: an application study with CDK2 and human DHFR. J. Chem. Inf. Model. 46(2):728–735, 2006.CrossRefGoogle Scholar
  39. 39.
    Trott, O., and A. J. Olson. Software news and update Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2):455–461, 2010.Google Scholar
  40. 40.
    Vogt, M., and J. Bajorath. Data mining approaches for compound selection and iterative screening. In: Pharmaceutical Data Mining: Approaches and Applications for Drug Discovery, edited by K. V. Balakin. Hoboken, NJ, USA: John Wiley & Sons, 2009, pp. 115–143.Google Scholar
  41. 41.
    Vyas, V. K., M. Ghate, and A. Goel. Pharmacophore modeling, virtual screening, docking and in silico ADMET analysis of protein kinase B (PKB beta) inhibitors. J. Mol. Graph. Model. 42:17–25, 2013.CrossRefGoogle Scholar
  42. 42.
    Wallace, A. C., R. A. Laskowski, and J. M. Thornton. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8:127–134, 1996.Google Scholar
  43. 43.
    Wang, H. Y., et al. LPS induces cardiomyocyte injury through calcium-sensing receptor. Mol. Cell. Biochem. 379(1–2):153–159, 2013.Google Scholar
  44. 44.
    Willett, P. Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today 11:1046–1053, 2006.CrossRefGoogle Scholar
  45. 45.
    Zamponi, G. W., and K. P. M. Currie. Regulation of Ca(v)2 calcium channels by G protein coupled receptors. Biochim. Biophys. Acta 1828(7):1629–1643, 2013.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Adam A. Skelton
    • 1
  • Yushir R. Maharaj
    • 1
  • Mahmoud E. S. Soliman
    • 1
  1. 1.School of Health SciencesUniversity of KwaZulu NatalDurbanSouth Africa

Personalised recommendations