Cellular and Molecular Bioengineering

, Volume 6, Issue 3, pp 279–286 | Cite as

Combating Adaptation to Cyclic Stretching by Prolonging Activation of Extracellular Signal-Regulated Kinase

  • Justin S. Weinbaum
  • Jillian B. Schmidt
  • Robert T. Tranquillo


In developing implantable tissues based on cellular remodeling of a fibrin scaffold, a key indicator of success is high collagen content. Cellular collagen synthesis is stimulated by cyclic stretching but is limited by cellular adaptation. Adaptation is mediated by deactivation of extracellular signal-regulated kinase (ERK); therefore inhibition of ERK deactivation should improve mechanically stimulated collagen production and accelerate the development of strong engineered tissues. The hypothesis of this study is that p38 mitogen activated protein kinase (p38) activation by stretching limits ERK activation and that chemical inhibition of p38 α/γ isoforms with SB203580 will increase stretching-induced ERK activation and collagen production. Both p38 and ERK were activated by 15 min of stretching but only p38 remained active after 1 h. After an effective dose of inhibitor was identified using cell monolayers, 5 μM SB203580 was found to increase ERK activation by two-fold in cyclically stretched fibrin-based tissue constructs. When 5 μM SB203580 was added to the culture medium of constructs exposed to 3 weeks of incremental amplitude cyclic stretch, 2.6 fold higher stretching-induced total collagen was obtained. In conclusion, SB203580 circumvents adaptation to stretching induced collagen production and may be useful in engineering tissues where mechanical strength is a priority.


Cell signaling Collagen Fibrin Fibroblast Inhibition Mechanical signaling Mitogen-activated protein kinase p38 





Extracellular signal-regulated kinase


Mitogen-activated protein kinase


Phosphate buffered saline




Sodium dodecyl sulfate polyacrylamide gel electrophoresis


Tris buffered saline


  1. 1.
    Bain, J., L. Plater, M. Elliott, N. Shpiro, C. J. Hastie, H. McLauchlan, I. Klevernic, J. S. Arthur, D. R. Alessi, and P. Cohen. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408(3):297–315, 2007.CrossRefGoogle Scholar
  2. 2.
    Barocas, V. H., T. S. Girton, and R. T. Tranquillo. Engineered alignment in media equivalents: magnetic prealignment and mandrel compaction. J. Biomech. Eng. 120(5):660–666, 1998.CrossRefGoogle Scholar
  3. 3.
    Bhogal, R. K., and C. A. Bona. Regulatory effect of extracellular signal-regulated kinases (ERK) on type I collagen synthesis in human dermal fibroblasts stimulated by IL-4 and IL-13. Int. Rev. Immunol. 27(6):472–496, 2008.CrossRefGoogle Scholar
  4. 4.
    Birkenkamp, K. U., L. M. Tuyt, C. Lummen, A. T. Wierenga, W. Kruijer, and E. Vellenga. The p38 map kinase inhibitor sb203580 enhances nuclear factor-kappa b transcriptional activity by a non-specific effect upon the erk pathway. Br. J. Pharmacol. 131(1):99–107, 2000.CrossRefGoogle Scholar
  5. 5.
    Birla, R. K., Y. C. Huang, and R. G. Dennis. Effect of streptomycin on the active force of bioengineered heart muscle in response to controlled stretch. In Vitro Cell. Dev. Biol. Anim. 44(7):253–260, 2008.CrossRefGoogle Scholar
  6. 6.
    Dombi, G. W., R. C. Haut, and W. G. Sullivan. Correlation of high-speed tensile strength with collagen content in control and lathyritic rat skin. J. Surg. Res. 54(1):21–28, 1993.CrossRefGoogle Scholar
  7. 7.
    Duan, L., Y. Miura, M. Dimri, B. Majumder, I. L. Dodge, A. L. Reddi, A. Ghosh, N. Fernandes, P. Zhou, K. Mullane-Robinson, N. Rao, S. Donoghue, R. A. Rogers, D. Bowtell, M. Naramura, H. Gu, V. Band, and H. Band. Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J. Biol. Chem. 278(31):28950–28960, 2003.CrossRefGoogle Scholar
  8. 8.
    Engel, F. B., M. Schebesta, M. T. Duong, G. Lu, S. Ren, J. B. Madwed, H. Jiang, Y. Wang, and M. T. Keating. p38 map kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 19(10):1175–1187, 2005.CrossRefGoogle Scholar
  9. 9.
    Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J. Biomed. Mater. Res. 60(4):607–612, 2002.CrossRefGoogle Scholar
  10. 10.
    Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. A fibrin-based arterial media equivalent. J. Biomed Mater. Res. A 66(3):550–561, 2003.CrossRefGoogle Scholar
  11. 11.
    Hall-Jackson, C. A., M. Goedert, P. Hedge, and P. Cohen. Effect of SB 203580 on the activity of c-Raf in vitro and in vivo. Oncogene 18(12):2047–2054, 1999.CrossRefGoogle Scholar
  12. 12.
    Isojima, Y., N. Okumura, and K. Nagai. Molecular mechanism of mammalian circadian clock. J. Biochem. 134(6):777–784, 2003.CrossRefGoogle Scholar
  13. 13.
    Jeon, Y. M., S. H. Kook, Y. O. Son, E. M. Kim, S. S. Park, J. G. Kim, and J. C. Lee. Role of mapk in mechanical force-induced up-regulation of type I collagen and osteopontin in human gingival fibroblasts. Mol. Cell. Biochem. 320(1–2):45–52, 2009.CrossRefGoogle Scholar
  14. 14.
    Kakisis, J. D., S. Pradhan, A. Cordova, C. D. Liapis, and B. E. Sumpio. The role of stat-3 in the mediation of smooth muscle cell response to cyclic strain. Int. J. Biochem. Cell Biol. 37(7):1396–1406, 2005.CrossRefGoogle Scholar
  15. 15.
    Kalmes, A., J. Deou, A. W. Clowes, and G. Daum. Raf-1 is activated by the p38 mitogen-activated protein kinase inhibitor, SB203580. FEBS Lett. 444(1):71–74, 1999.CrossRefGoogle Scholar
  16. 16.
    Kook, S. H., J. M. Hwang, J. S. Park, E. M. Kim, J. S. Heo, Y. M. Jeon, and J. C. Lee. Mechanical force induces type I collagen expression in human periodontal ligament fibroblasts through activation of ERK/JNK and ap-1. J. Cell. Biochem. 106(6):1060–1067, 2009.CrossRefGoogle Scholar
  17. 17.
    Kushida, N., Y. Kabuyama, O. Yamaguchi, and Y. Homma. Essential role for extracellular Ca(2+) in JNK activation by mechanical stretch in bladder smooth muscle cells. Am. J. Physiol. Cell Physiol. 281(4):C1165–C1172, 2001.Google Scholar
  18. 18.
    Lee, J. T., L. S. Steelman, W. H. Chappell, and J. A. McCubrey. Akt inactivates ERK causing decreased response to chemotherapeutic drugs in advanced cap cells. Cell Cycle 7(5):631–636, 2008.CrossRefGoogle Scholar
  19. 19.
    Long, J. L., and R. T. Tranquillo. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol. 22(4):339–350, 2003.CrossRefGoogle Scholar
  20. 20.
    Mammoto, A., T. Mammoto, and D. E. Ingber. Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 125(Pt 13):3061–3073, 2012.CrossRefGoogle Scholar
  21. 21.
    Marquez, J. P., W. Legant, V. Lam, A. Cayemberg, E. Elson, and T. Wakatsuki. High-throughput measurements of hydrogel tissue construct mechanics. Tissue Eng. C Methods 15(2):181–190, 2009.CrossRefGoogle Scholar
  22. 22.
    Molina, G., A. Vogt, A. Bakan, W. Dai, P. Queiroz de Oliveira, W. Znosko, T. E. Smithgall, I. Bahar, J. S. Lazo, B. W. Day, and M. Tsang. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5(9):680–687, 2009.CrossRefGoogle Scholar
  23. 23.
    Mucsi, I., K. L. Skorecki, and H. J. Goldberg. Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-beta1 on gene expression. J. Biol. Chem. 271(28):16567–16572, 1996.CrossRefGoogle Scholar
  24. 24.
    Nakao, A., M. Afrakhte, A. Moren, T. Nakayama, J. L. Christian, R. Heuchel, S. Itoh, M. Kawabata, N. E. Heldin, C. H. Heldin, and P. ten Dijke. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389(6651):631–635, 1997.CrossRefGoogle Scholar
  25. 25.
    Neidert, M. R., E. S. Lee, T. R. Oegema, and R. T. Tranquillo. Enhanced fibrin remodeling in vitro with TGF-beta1, insulin and plasmin for improved tissue-equivalents. Biomaterials 23(17):3717–3731, 2002.CrossRefGoogle Scholar
  26. 26.
    Oh, C. D., S. H. Chang, Y. M. Yoon, S. J. Lee, Y. S. Lee, S. S. Kang, and J. S. Chun. Opposing role of mitogen-activated protein kinase subtypes, ERK-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem. 275(8):5613–5619, 2000.CrossRefGoogle Scholar
  27. 27.
    Papakrivopoulou, J., G. E. Lindahl, J. E. Bishop, and G. J. Laurent. Differential roles of extracellular signal-regulated kinase 1/2 and p38MAPK in mechanical load-induced procollagen alpha1(I) gene expression in cardiac fibroblasts. Cardiovasc. Res. 61(4):736–744, 2004.CrossRefGoogle Scholar
  28. 28.
    Paxton, J. Z., P. Hagerty, J. J. Andrick, and K. Baar. Optimizing an intermittent stretch paradigm using ERK1/2 phosphorylation results in increased collagen synthesis in engineered ligaments. Tissue Eng. A 18(3–4):277–284, 2012.CrossRefGoogle Scholar
  29. 29.
    Ponticos, M., A. M. Holmes, X. Shi-wen, P. Leoni, K. Khan, V. S. Rajkumar, R. K. Hoyles, G. Bou-Gharios, C. M. Black, C. P. Denton, D. J. Abraham, A. Leask, and G. E. Lindahl. Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum. 60(7):2142–2155, 2009.CrossRefGoogle Scholar
  30. 30.
    Rodriguez-Vita, J., M. Ruiz-Ortega, M. Ruperez, V. Esteban, E. Sanchez-Lopez, J. J. Plaza, and J. Egido. Endothelin-1, via ETA receptor and independently of transforming growth factor-beta, increases the connective tissue growth factor in vascular smooth muscle cells. Circ. Res. 97(2):125–134, 2005.CrossRefGoogle Scholar
  31. 31.
    Ross, J. J., and R. T. Tranquillo. Ecm gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol. 22(6):477–490, 2003.CrossRefGoogle Scholar
  32. 32.
    Rubbens, M. P., A. Mol, R. A. Boerboom, R. A. Bank, F. P. Baaijens, and C. V. Bouten. Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue. Tissue Eng. A 15(5):999–1008, 2009.CrossRefGoogle Scholar
  33. 33.
    Shi, F., Y. J. Chiu, Y. Cho, T. A. Bullard, M. Sokabe, and K. Fujiwara. Down-regulation of ERK but not mek phosphorylation in cultured endothelial cells by repeated changes in cyclic stretch. Cardiovasc. Res. 73(4):813–822, 2007.CrossRefGoogle Scholar
  34. 34.
    Starcher, B. A ninhydrin-based assay to quantitate the total protein content of tissue samples. Anal. Biochem. 292(1):125–129, 2001.CrossRefGoogle Scholar
  35. 35.
    Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta 18(2):267–273, 1967.CrossRefGoogle Scholar
  36. 36.
    Stopa, M., D. Anhuf, L. Terstegen, P. Gatsios, A. M. Gressner, and S. Dooley. Participation of Smad2, Smad3, and Smad4 in transforming growth factor beta (TGF-beta)-induced activation of Smad7. The TGF-beta response element of the promoter requires functional Smad binding element and e-box sequences for transcriptional regulation. J. Biol. Chem. 275(38):29308–29317, 2000.CrossRefGoogle Scholar
  37. 37.
    Syedain, Z. H., and R. T. Tranquillo. Tgf-beta1 diminishes collagen production during long-term cyclic stretching of engineered connective tissue: implication of decreased erk signaling. J. Biomech. 44(5):848–855, 2011.CrossRefGoogle Scholar
  38. 38.
    Syedain, Z. H., J. S. Weinberg, and R. T. Tranquillo. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Natl. Acad. Sci. USA 105(18):6537–6542, 2008.CrossRefGoogle Scholar
  39. 39.
    Tharaux, P. L., C. Chatziantoniou, F. Fakhouri, and J. C. Dussaule. Angiotensin II activates collagen I gene through a mechanism involving the MAP/ER kinase pathway. Hypertension 36(3):330–336, 2000.CrossRefGoogle Scholar
  40. 40.
    Wang, H., S. M. Haeger, A. M. Kloxin, L. A. Leinwand, and K. S. Anseth. Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. PLoS ONE 7(7):e39969, 2012.CrossRefGoogle Scholar
  41. 41.
    Wang, X., J. Rao, and G. P. Studzinski. Inhibition of p38 map kinase activity up-regulates multiple map kinase pathways and potentiates 1,25-dihydroxyvitamin d(3)-induced differentiation of human leukemia HL60 cells. Exp. Cell Res. 258(2):425–437, 2000.CrossRefGoogle Scholar
  42. 42.
    Watanabe, H., M. P. de Caestecker, and Y. Yamada. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells. J. Biol. Chem. 276(17):14466–14473, 2001.Google Scholar
  43. 43.
    Williams, C., S. L. Johnson, P. S. Robinson, and R. T. Tranquillo. Cell sourcing and culture conditions for fibrin-based valve constructs. Tissue Eng. 12(6):1489–1502, 2006.CrossRefGoogle Scholar
  44. 44.
    Wu, M. H., H. Y. Wang, H. L. Liu, S. S. Wang, Y. T. Liu, Y. M. Chen, S. W. Tsai, and C. L. Lin. Development of high-throughput perfusion-based microbioreactor platform capable of providing tunable dynamic tensile loading to cells and its application for the study of bovine articular chondrocytes. Biomed. Microdevices 13(4):789–798, 2011.CrossRefGoogle Scholar
  45. 45.
    Yang, F., A. C. Chung, X. R. Huang, and H. Y. Lan. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension 54(4):877–884, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Justin S. Weinbaum
    • 1
    • 3
  • Jillian B. Schmidt
    • 2
  • Robert T. Tranquillo
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Chemical Engineering & Materials ScienceUniversity of MinnesotaMinneapolisUSA
  3. 3.Center for BioengineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations