Advertisement

Cellular and Molecular Bioengineering

, Volume 6, Issue 2, pp 220–229 | Cite as

High-level Shear Stress Stimulates Endothelial Differentiation and VEGF Secretion by Human Mesenchymal Stem Cells

  • Lin Yuan
  • Naoya Sakamoto
  • Guanbin Song
  • Masaaki Sato
Article

Abstract

Growing experimental evidence suggests that mechanical stimulation play important roles in determining the proliferation, migration, and apoptosis of human mesenchymal stem cells (hMSCs). Here, we show that shear stress stimulates hMSCs toward an EC phenotype in the absence of chemical induction. Most importantly, fluorescence microscopy clearly demonstrated for the first time that the distributions of endothelial-specific markers, vascular endothelial (VE)-cadherin and CD31, in hMSCs were similar to those of ECs at cell–cell adhesion sites after exposing hMSCs to a shear stress of 2 Pa for 2 days with subsequent static culture for 5 days. Western blot analysis proved that shear stress of 2 Pa significantly induced protein expression of von Willebrand factor (vWF), VE–cadherin, and CD31. However, an unclear expression of the endothelial-specific markers was observed in the 0.2 Pa shear stress group. In addition, there was a cumulative production of vascular endothelial growth factor (VEGF), which is known to induce endothelial differentiation of MSCs. By exerting shear stress of 2 Pa on hMSCs for 2 days with subsequent culture for 5 days, the production level of approximately 2-fold compared with that of the control group was achieved. Our findings suggest that high-level shear stress can induce VEGF production and EC differentiation from hMSCs. This may provide a means for addressing the cell sourcing issue for effective tissue engineering.

Keywords

Mechanical stimulation Cell–cell adhesion Cytokine Immunofluorescence staining 

Abbreviations

VEGF

Vascular endothelial growth factor

hMSCs

Human mesenchymal stem cells

ECs

Endothelial cells

VE-cadherin

Vascular endothelial (VE)-cadherin

vWF

von Willebrand factor

FCS

Fetal calf serum

bFGF

Basic fibroblast growth factor

EDTA

Ethylenediaminetetraacetic acid

SDS-PAGE

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

EGTA

Ethylene glycol tetraacetic acid

PMSF

Phenylmethylsulfonyl fluoride

TBST

Tris-buffered saline with Tween-20

HRP

Horseradish peroxidase

Notes

Acknowledgments

This study was supported in part by Grants-in-Aid for Scientific Research (Specially Promoted Research) from the Japan Society for the Promotion of Science (No. 20001007), the National Natural Science Foundation of China (nos. 30770530, 11032012 and 11102240), the Fundamental Research Funds for the Central Universities (CDJXS11232243), and the Natural Science Foundation Project of CQ CSTC (2010BB5236) of China.

References

  1. 1.
    Adamo, L., O. Naveiras, P. L. Wenzel, S. McKinney-Freeman, P. J. Mack, J. Gracia-Sancho, A. Suchy-Dicey, M. Yoshimoto, M. W. Lensch, M. C. Yoder, G. García-Cardeña, and G. Q. Daley. Biomechanical forces promote embryonic haematopoiesis. Nature 25:1131–1135, 2009.CrossRefGoogle Scholar
  2. 2.
    Ahsan, T., and R. M. Nerem. Fluid shear stress promotes an endothelial-like phenotype during the early differentiation of embryonic stem cells. Tissue Eng. Part A. 16:3547–3553, 2010.CrossRefGoogle Scholar
  3. 3.
    Al-Khaldi, A., N. Eliopoulos, D. Martineau, L. Lejeune, K. Lachapelle, and J. Galipeau. Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther. 10:621–629, 2003.CrossRefGoogle Scholar
  4. 4.
    Au, P., J. Tam, D. Fukumura, and R. K. Jain. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111:4551–4558, 2008.CrossRefGoogle Scholar
  5. 5.
    Azuma, N., N. Akasaka, H. Kito, M. Ikeda, V. Gahtan, T. Sasajima, and B. E. Sumpio. Role of p38 MAP kinase in endothelial cell alignment induced by fluid shear stress. Am. J. Physiol. Heart Circ. Physiol. 280:H189–H197, 2001.Google Scholar
  6. 6.
    Banas, A., T. Teratani, Y. Yamamoto, M. Tokuhara, F. Takeshita, M. Osaki, M. Kawamata, T. Kato, H. Okochi, and T. Ochiya. IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells 26:2705–2712, 2008.CrossRefGoogle Scholar
  7. 7.
    Bassaneze, V., V. G. Barauna, C. Lavini-Ramos, J. Kalil, I. T. Schettert, A. A. Miyakawa, and J. E. Krieger. Shear stress induces nitric oxide-mediated vascular endothelial growth factor production in human adipose tissue mesenchymal stem cells. Stem Cells Dev. 19:371–378, 2010.CrossRefGoogle Scholar
  8. 8.
    Benavides, O. M., J. J. Petsche, K. J. Moise, Jr., A. Johnson, and J. G. Jacot. Evaluation of endothelial cells differentiated from amniotic fluid-derived stem cells. Tissue Eng. Part A. 18:1123–1131, 2012.CrossRefGoogle Scholar
  9. 9.
    Breier, G., F. Breviario, L. Caveda, R. Berthier, H. Schnürch, U. Gotsch, D. Vestweber, W. Risau, and E. Dejana. Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 87:630–641, 1996.Google Scholar
  10. 10.
    Cai, J., W. G. Jiang, and R. E. Mansel. Phosphorylation and disorganization of vascular-endothelial cadherin in interaction between breast cancer and vascular endothelial cells. Int. J. Mol. Med. 4:191–195, 1999.Google Scholar
  11. 11.
    Cao, Y., Z. Sun, L. Liao, Y. Meng, Q. Han, and R. C. Zhao. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem. Biophys. Res. Commun. 332:370–379, 2005.CrossRefGoogle Scholar
  12. 12.
    Chamberlain, G., J. Fox, B. Ashton, and J. Middleton. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 25:2739–2749, 2007.CrossRefGoogle Scholar
  13. 13.
    Chen, J., Y. Li, L. Wang, M. Lu, X. Zhang, and M. Chopp. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J. Neurol. Sci. 189:49–57, 2001.CrossRefGoogle Scholar
  14. 14.
    Dado, D., M. Sagi, S. Levenberg, and A. Zemel. Mechanical control of stem cell differentiation. Regen. Med. 7:101–116, 2012.CrossRefGoogle Scholar
  15. 15.
    Dong, J. D., Y. Q. Gu, C. M. Li, C. R. Wang, Z. G. Feng, R. X. Qiu, B. Chen, J. X. Li, S. W. Zhang, Z. G. Wang, and J. Zhang. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol. Sin. 30:530–536, 2009.CrossRefGoogle Scholar
  16. 16.
    Eming, S. A., and T. Krieg. Molecular mechanisms of VEGF-A action during tissue repair. J. Investig. Dermatol. Symp. Proc. 11:79–86, 2006.CrossRefGoogle Scholar
  17. 17.
    Golding, B., S. R. Pillemer, P. Roussou, E. A. Peters, G. C. Tsokos, J. E. Ballow, and T. Hoffman. Inverse relationship between proliferation and differentiation in a human TNP-specific B cell line. Cell cycle dependence of antibody secretion. J. Immunol. 141:2564–2568, 1988.Google Scholar
  18. 18.
    Hu, B., M. J. Jarzynka, P. Guo, Y. Imanishi, D. D. Schlaepfer, and S. Y. Chengl. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res. 66:775–783, 2006.CrossRefGoogle Scholar
  19. 19.
    Kreke, M. R., and A. S. Goldstein. Hydrodynamic shear stimulates osteocalcin expression but not proliferation of bone marrow stromal cells. Tissue Eng. 10:780–788, 2004.CrossRefGoogle Scholar
  20. 20.
    Kreke, M. R., L. A. Sharp, Y. W. Lee, and A. S. Goldstein. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng. Part A. 14:529–537, 2008.CrossRefGoogle Scholar
  21. 21.
    Le Guelte, A., J. Dwyer, and J. Gavard. Jumping the barrier: VE-cadherin, VEGF and other angiogenic modifiers in cancer. Biol. Cell. 103:593–605, 2011.CrossRefGoogle Scholar
  22. 22.
    Lee, D. A., M. M. Knight, J. J. Campbell, and D. L. Bader. Stem cell mechanobiology. J. Cell Biochem. 112:1–9, 2011.CrossRefGoogle Scholar
  23. 23.
    Lu, D., Y. Li, L. Wang, J. Chen, A. Mahmood, and M. Chopp. Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J. Neurotrauma 18:813–819, 2001.CrossRefGoogle Scholar
  24. 24.
    Oswald, J., S. Boxberger, B. Jørgensen, S. Feldmann, G. Ehninger, M. Bornhäuser, and C. Werner. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384, 2004.CrossRefGoogle Scholar
  25. 25.
    Pankajakshan, D., V. Kansal and D. K. Agrawal. In vitro differentiation of bone marrow derived porcine mesenchymal stem cells to endothelial cells. J. Tissue Eng. Regen. Med. 18, 2012 [Epub ahead of print].Google Scholar
  26. 26.
    Papaioannou, T. G., and C. Stefanadis. Vascular wall shear stress: basic principles and methods. Hellenic. J. Cardiol. 46:9–15, 2005.Google Scholar
  27. 27.
    Pradel, W., R. Mai, T. Gedrange, and G. Lauer. Cell passage and composition of culture medium effects proliferation and differentiation of human osteoblast-like cells from facial bone. J. Physiol. Pharmacol. 59(Suppl 5):47–58, 2008.Google Scholar
  28. 28.
    Ramkisoensing, A. A., D. A. Pijnappels, S. F. Askar, R. Passier, J. Swildens, M. J. Goumans, C. I. Schutte, A. A. de Vries, S. Scherjon, C. L. Mummery, M. J. Schalij, and D. E. Atsma. Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts. PLoS One 6:e24164, 2011.CrossRefGoogle Scholar
  29. 29.
    Sheridan, C. M., D. Rice, P. S. Hiscott, D. Wong, and D. L. Kent. The presence of AC133-positive cells suggests a possible role of endothelial progenitor cells in the formation of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 47:1642–1645, 2006.CrossRefGoogle Scholar
  30. 30.
    Silva, G. V., S. Litovsky, J. A. Assad, A. L. Sousa, B. J. Martin, D. Vela, S. C. Coulter, J. Lin, J. Ober, W. K. Vaughn, R. V. Branco, E. M. Oliveira, R. He, Y. J. Geng, J. T. Willerson, and E. C. Perin. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 18:150–156, 2005.CrossRefGoogle Scholar
  31. 31.
    Stolberg, S., and K. E. McCloskey. Can shear stress direct stem cell fate? Biotechnol. Prog. 25:10–19, 2009.CrossRefGoogle Scholar
  32. 32.
    Trivedi, P., N. Tray, T. Nguyen, N. Nigam, and G. I. Gallicano. Mesenchymal stem cell therapy for treatment of cardiovascular disease: helping people sooner or later. Stem Cells Dev. 19:1109–1120, 2010.CrossRefGoogle Scholar
  33. 33.
    Wang, M., P. R. Crisostomo, C. Herring, K. K. Meldrum, and D. R. Meldrum. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:R880–R884, 2006.CrossRefGoogle Scholar
  34. 34.
    Wang, H., G. M. Riha, S. Yan, M. Li, H. Chai, H. Yang, Q. Yao, and C. Chen. Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler. Thromb. Vasc. Biol. 25:1817–1823, 2005.CrossRefGoogle Scholar
  35. 35.
    Wang, M., Y. Su, H. Sun, T. Wang, G. Yan, X. Ran, F. Wang, T. Cheng, and Z. Zou. Induced endothelial differentiation of cells from a murine embryonic mesenchymal cell line C3H/10T1/2 by angiogenic factors in vitro. Differentiation 79:21–30, 2010.CrossRefGoogle Scholar
  36. 36.
    Woodfin, A., M. B. Voisin, and S. Nourshargh. PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler. Thromb. Vasc. Biol. 27:2514–2523, 2007.CrossRefGoogle Scholar
  37. 37.
    Yamamoto, K., T. Takahashi, T. Asahara, N. Ohura, T. Sokabe, A. Kamiya, and J. Ando. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J. Appl. Physiol. 95:2081–2088, 2003.Google Scholar
  38. 38.
    Yuan, L., N. Sakamoto, G. B. Song, and M. Sato. Migration of human mesenchymal stem cells under low shear stress mediated by mitogen-activated protein kinase signaling. Stem Cells Dev. 21:2520–2530, 2012.CrossRefGoogle Scholar
  39. 39.
    Zeng, L., Q. Xiao, A. Margariti, Z. Zhang, A. Zampetaki, S. Patel, M. C. Capogrossi, Y. Hu, and Q. Xu. HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J. Cell Biol. 25:1059–1069, 2006.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Lin Yuan
    • 1
    • 2
  • Naoya Sakamoto
    • 3
  • Guanbin Song
    • 1
  • Masaaki Sato
    • 2
  1. 1.Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
  2. 2.Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
  3. 3.Department of Medical TechnologyKawasaki University of Medical WelfareKawasakiJapan

Personalised recommendations