Advertisement

Cellular and Molecular Bioengineering

, Volume 5, Issue 4, pp 402–413 | Cite as

Role of Epidermal Growth Factor-Triggered PI3K/Akt Signaling in the Migration of Medulloblastoma-Derived Cells

  • Veronica Dudu
  • Richard A. AbleJr.
  • Veronica Rotari
  • Qingjun Kong
  • Maribel Vazquez
Article

Abstract

Medulloblastoma (MB) is the most common brain cancer diagnosed among children. The cellular pathways that regulate MB invasion in response to environmental cues remain incompletely understood. Herein, we examine the migratory response of human MB-derived Daoy cells to different concentration profiles of Epidermal Growth Factor (EGF) using a microfluidic system. Our findings provide the first quantitative evidence that EGF concentration gradients modulate the chemotaxis of MB-derived cells in a dose-dependent manner via the EGF receptor (EGF-R). Data illustrates that higher concentration gradients caused increased number of cells to migrate. In addition, our results show that EGF-induced receptor phosphorylation triggered the downstream activation of phosphoinositide-3 kinase (PI3K)/Akt pathway, while its downstream activation was inhibited by Tarceva (an EGF-R inhibitor), and Wortmannin (a PI3K inhibitor). The treatment with inhibitors also severely reduced the number of MB-derived cells that migrated towards increasing EGF concentration gradients. Our results provide evidence to bolster the development of anti-migratory therapies as viable strategies to impede EGF-stimulated MB dispersal.

Keywords

Chemotaxis EGF microfluidics Daoy PI3K/Akt 

Notes

Acknowledgments

This work has been supported by The National Institutes of Health (R21 CA 118255 and U54 MICHOR), The Pediatric Brain Tumor Foundation, and PSC-CUNY (No. 69424). The authors wish to thank Ms. Jennifer Rico for her technical assistance in this work.

Supplementary material

12195_2012_253_MOESM1_ESM.jpg (155 kb)
Supplementary Fig. 1 Increasing EGF concentration target the invasion of a larger number of MB-derived cells in Boyden chambers. MB-derived cells were exposed to 0, 10 ng/ml, 100 ng/ml, 1000 ng/ml, 1000 ng/ml EGF concentrations concentration gradients for 6 h. (A) The average numbers of invading serum-starved cells are represented with standard error bars. (B) The average numbers of invading cells in the presence of FBS are represented with standard error bars (A, B sample size: ncontrol = 6, nEGF10 = 6, nEGF100 = 6, nEGF1000 = 6). (JPEG 154 kb)

References

  1. 1.
    Able, R. A., C. Ngnabeuye, C. Beck, E. C. Holland, and M. Vazquez. Low concentration microenvironments enhance the migration of neonatal cells of glial lineage. Cell. Mol. Bioeng. 5(2):128–142, 2012.CrossRefGoogle Scholar
  2. 2.
    Abouantoun, T. J., and T. J. Macdonald. Imatinib blocks migration and invasion of medulloblastoma cells by concurrently inhibiting activation of platelet-derived growth factor receptor and transactivation of epidermal growth factor receptor. Mol. Cancer Ther. 8(5):1137–1147, 2009.CrossRefGoogle Scholar
  3. 3.
    Brockmann, M. A., U. Ulbricht, K. Gruner, R. Fillbrandt, M. Westphal, and K. Lamszus. Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery 52(6):1391–1399, 2003.CrossRefGoogle Scholar
  4. 4.
    Cadena, D. L., C. L. Chan, and G. N. Gill. The intracellular tyrosine kinase domain of the epidermal growth factor receptor undergoes a conformational change upon autophosphorylation. J. Biol. Chem. 269(1):260–265, 1994.Google Scholar
  5. 5.
    Calabrese, C., A. Frank, K. Maclean, and R. Gilbertson. Medulloblastoma sensitivity to 17-allylamino-17-demethoxygeldanamycin requires MEK/ERKM. J. Biol. Chem. 278:24951–24959, 2003.CrossRefGoogle Scholar
  6. 6.
    Condeelis, J., and J. E. Segall. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3(12):921–930, 2003.CrossRefGoogle Scholar
  7. 7.
    Dudu, V., M. Ramcharan, M. L. Gilchrist, E. C. Holland, and M. Vazquez. Liposome delivery of quantum dots to the cytosol of live cells. J. Nanosci. Nanotechnol. 8(5):2293–2300, 2008.CrossRefGoogle Scholar
  8. 8.
    Dudu, V., V. Rotari, and M. Vazquez. Sendai virus-based liposomes enable targeted cytosolic delivery of nanoparticles in brain tumor-derived cells. J. Nanobiotechnol. 10(1):9, 2012.CrossRefGoogle Scholar
  9. 9.
    Duffner, P. K., M. E. Horowitz, J. P. Krischer, P. C. Burger, M. E. Cohen, R. A. Sanford, H. S. Friedman, and L. E. Kun. The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuro. Oncol. 1(2):152–161, 1999.Google Scholar
  10. 10.
    Ekani-Nkodo, A., and D. K. Fygenson. Size exclusion and diffusion of fluoresceinated probes within collagen fibrils. Phys. Rev. E 67(2 Pt 1):021909, 2003.CrossRefGoogle Scholar
  11. 11.
    Fukazawa, T., S. Miyake, V. Band, and H. Band. Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins. J. Biol. Chem. 271(24):14554–14559, 1996.CrossRefGoogle Scholar
  12. 12.
    Girish, M., S. Nair, T. Muthurethinam, K. Krishnakumar, and R. N. Bhattacharya. Medulloblastoma in children: prognostic factors and predictors of outcome. J. Pediatr. Neurosci. 1(1):16–20, 2006.CrossRefGoogle Scholar
  13. 13.
    Guessous, F., Y. Zhang, C. diPierro, L. Marcinkiewicz, J. Sarkaria, D. Schiff, S. Buchanan, and R. Abounader. An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth. Anticancer Agents Med. Chem. 10(1):28–35, 2010.CrossRefGoogle Scholar
  14. 14.
    Herbst, R. S. Erlotinib. Clin. Adv. Hematol. Oncol. 3(2):124–141, 2005.Google Scholar
  15. 15.
    Hernan, R., R. Fasheh, C. Calabrese, A. J. Frank, K. H. Maclean, D. Allard, R. Barraclough, and R. J. Gilbertson. ERBB2 up-regulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer Res. 63(1):140–148, 2003.Google Scholar
  16. 16.
    Hirata, A., S. Ogawa, T. Kometani, T. Kuwano, S. Naito, M. Kuwano, and M. Ono. ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res. 62(9):2554–2560, 2002.Google Scholar
  17. 17.
    Huse, J. T., and E. C. Holland. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat. Rev. Cancer 10(5):319–331, 2010.CrossRefGoogle Scholar
  18. 18.
    Kim, M. J., and K. S. Breuer. Enhanced diffusion due to motile bacteria. Phys. Fluids 16(9):L78–L81, 2004.CrossRefGoogle Scholar
  19. 19.
    Kim, H., and W. J. Muller. The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp. Cell Res. 253(1):78–87, 1999.CrossRefGoogle Scholar
  20. 20.
    Kong, Q., R. Able, V. Dudu, and M. Vazquez. A microfluidic device to establish concentration gradients using reagent density differences. J. Biomech. Eng. 132(12):121012, 2010.CrossRefGoogle Scholar
  21. 21.
    Kong, Q., R. J. Majeska, and M. Vazquez. Migration of connective tissue-derived cells is mediated by ultra-low concentration gradient fields of EGF. Exp. Cell Res. 317:1491–1502, 2011.CrossRefGoogle Scholar
  22. 22.
    Kruger, J. S., and K. B. Reddy. Distinct mechanisms mediate the initial and sustained phases of cell migration in epidermal growth factor receptor-overexpressing cells. Mol. Cancer Res. 1(11):801–809, 2003.Google Scholar
  23. 23.
    Lang, I., M. Scholz, and R. Peters. Molecular mobility and nucleocytoplasmic flux in hepatoma cells. J. Cell Biol. 102(4):1183–1190, 1986.CrossRefGoogle Scholar
  24. 24.
    Lauffenburger, D. A., and A. F. Horwitz. Cell migration: a physically integrated molecular process. Cell 84(3):359–369, 1996.CrossRefGoogle Scholar
  25. 25.
    Le Roy, C., and J. L. Wrana. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat. Rev. Mol. Cell Biol. 6(2):112–126, 2005.CrossRefGoogle Scholar
  26. 26.
    Meco, D., T. Servidei, A. Riccardi, C. Ferlini, G. Cusano, G. F. Zannoni, F. Giangaspero, and R. Riccardi. Antitumor effect in medulloblastoma cells by gefitinib: ectopic HER2 overexpression enhances gefitinib effects in vivo. Neuro. Oncol. 11:250–259, 2009.CrossRefGoogle Scholar
  27. 27.
    Mosadegh, B., W. Saadi, S. J. Wang, and N. L. Jeon. Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients. Biotechnol. Bioeng. 100(6):1205–1213, 2008.CrossRefGoogle Scholar
  28. 28.
    Nicholson, C., and L. Tao. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys. J. 65(6):2277–2290, 1993.CrossRefGoogle Scholar
  29. 29.
    Ono, M., and M. Kuwano. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin. Cancer Res. 12(24):7242–7251, 2006.CrossRefGoogle Scholar
  30. 30.
    Payet, L., A. Ponton, L. Lger, H. Hervet, J. L. Grossiord, and F. Agnely. Self-diffusion in chitosan networks: from a gel–gel method to fluorescence recovery after photobleaching by fringe pattern. Macromolecules 41(23):9376–9381, 2008.CrossRefGoogle Scholar
  31. 31.
    Reddy, A. T. Advances in biology and treatment of childhood brain tumors. Curr. Neurol. Neurosci. Rep. 1(2):137–143, 2001.CrossRefGoogle Scholar
  32. 32.
    Saadi, W., S. J. Wang, F. Lin, and N. L. Jeon. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed. Microdevices 8(2):109–118, 2006.CrossRefGoogle Scholar
  33. 33.
    Sahai, E. Mechanisms of cancer cell invasion. Curr. Opin. Genet. Dev. 15(1):87–96, 2005.CrossRefGoogle Scholar
  34. 34.
    Salomon, D. S., R. Brandt, F. Ciardiello, and N. Normanno. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 19(3):183–232, 1995.CrossRefGoogle Scholar
  35. 35.
    Seroogy, K. B., C. M. Gall, D. C. Lee, and H. I. Kornblum. Proliferative zones of postnatal rat brain express epidermal growth factor receptor mRNA. Brain Res. 670(1):157–164, 1995.CrossRefGoogle Scholar
  36. 36.
    Shen, J. Y., M. B. Chan-Park, B. He, A. P. Zhu, X. Zhu, R. W. Beuerman, E. B. Yang, W. Chen, and V. Chan. Three-dimensional microchannels in biodegradable polymeric films for control orientation and phenotype of vascular smooth muscle cells. Tissue Eng. 12(8):2229–2240, 2006.CrossRefGoogle Scholar
  37. 37.
    Wechsler-Reya, R., and M. P. Scott. The developmental biology of brain tumors. Annu. Rev. Neurosci. 24:385–428, 2001.CrossRefGoogle Scholar
  38. 38.
    Xia, P., P. M. Bungay, C. C. Gibson, O. N. Kovbasnjuk, and K. R. Spring. Diffusion coefficients in the lateral intercellular spaces of Madin-Darby canine kidney cell epithelium determined with caged compounds. Biophys. J. 74(6):3302–3312, 1998.CrossRefGoogle Scholar
  39. 39.
    Yamada, K. M., and E. Cukierman. Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610, 2007.CrossRefGoogle Scholar
  40. 40.
    Yarden, Y. The EGFR family and its ligands in human cancer signalling mechanisms and therapeutic opportunities. Eur. J. Cancer 37(Suppl 4):S3–S8, 2001.CrossRefGoogle Scholar
  41. 41.
    Yuan, L., M. Santi, E. J. Rushing, R. Cornelison, and T. J. MacDonald. ERK activation of p21 activated kinase-1 (Pak1) is critical for medulloblastoma cell migration. Clin. Exp. Metastasis 27(7):481–491, 2010.CrossRefGoogle Scholar
  42. 42.
    Yuan, K., R. Singh, G. Rezonzew, and G. P. Siegal. In vitro matrices for studying tumor cell invasion. In: Cell Motility in Cancer Invasion and Metastasis, Vol. 8, edited by A. Wells. New York: Springer, 2006, pp. 25–54.CrossRefGoogle Scholar
  43. 43.
    Zohrabian, V. M., B. Forzani, Z. Chau, R. Murali, and M. Jhanwar-Uniyal. Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res. 29(1):119–123, 2009.Google Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Veronica Dudu
    • 1
  • Richard A. AbleJr.
    • 1
    • 2
  • Veronica Rotari
    • 1
  • Qingjun Kong
    • 3
  • Maribel Vazquez
    • 1
  1. 1.Department of Biomedical EngineeringThe City College of the City University of New York (CCNY)New YorkUSA
  2. 2.Department of BiochemistryThe Graduate Center of the City University of New YorkNew YorkUSA
  3. 3.The New York Center for Biomedical EngineeringThe City College of the City University of New York (CCNY)New YorkUSA

Personalised recommendations