Advertisement

Cellular and Molecular Bioengineering

, Volume 5, Issue 3, pp 320–326 | Cite as

Landing Rate Measurements to Detect Fibrinogen Adsorption to Non-fouling Surfaces

  • Ashutosh Agarwal
  • Elizabeth Luria
  • Xiaopei Deng
  • Joerg Lahann
  • Henry Hess
Article

Abstract

Rapid advances in non-fouling surface technology have pushed the performance of novel coatings toward the detection limit of established protein density quantification techniques. Hence, there is an urgent need for more sensitive detection strategies. Previously we demonstrated that landing rate measurements of microtubules can reveal kinesin surface coverages between 0.1 and 10 μm−2. In this report, we quantify the binding kinetics of highly fluorescent markers to surface-adhered proteins and demonstrate the of protein surface densities in the range of 0.1–1000 μm−2. We utilize this technique to measure kinesin densities on casein-coated glass surfaces and fibrinogen densities on non-fouling polyethylene glycol methacrylate (PEGMA) surfaces. The use of nanospheres (i) potentially permits the detection of a variety of adsorbed proteins, (ii) facilitates the determination of the landing rate due to their uniformity, and (iii) extends the dynamic range of the method due to their small size.

Keywords

Biomaterials Coatings Fibrinogen Protein adsorption 

Notes

Acknowledgments

The authors thank Amit Singh of PERC, University of Florida, and Siheng He for helpful discussions. H.H. was supported by NSF Award DMR 1015486.

Conflict of interest

The authors do not have any conflict of interest to declare.

Supplementary material

12195_2012_239_MOESM1_ESM.pdf (185 kb)
Supplementary material 1 (PDF 185 kb)

References

  1. 1.
    Adamczyk, Z., J. Barbasz, and M. Ciesla. Kinetics of fibrinogen adsorption on hydrophilic substrates. Langmuir 27:6868–6878, 2011.Google Scholar
  2. 2.
    Adamczyk, Z., P. Belouschek, and D. Lorenz. Electrostatic interactions of bodies bearing thin double-layers, I. General formulation. Ber. Bunsenges. Phys. Chem. 94:1483–1492, 1990.Google Scholar
  3. 3.
    Agarwal, A., and H. Hess. Biomolecular motors at the intersection of nanotechnology and polymer science. Prog. Polym. Sci. 35:252–277, 2010.CrossRefGoogle Scholar
  4. 4.
    Agarwal, A., P. Katira, and H. Hess. Millisecond curing time of a molecular adhesive causes velocity-dependent cargo-loading of molecular shuttles. Nano. Lett. 9:1170–1175, 2009.CrossRefGoogle Scholar
  5. 5.
    Black, J. Biological Performance of Materials (4th ed.). Boca Raton: Taylor & Francis, 2006.Google Scholar
  6. 6.
    Cao, L., M. Chang, C.-Y. Lee, D. G. Castner, S. Sukavaneshvar, B. D. Ratner, and T. A. Horbett. Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition. J. Biomed. Mater. Res. A 81A:827–837, 2007.CrossRefGoogle Scholar
  7. 7.
    Chan, B. M. C., and J. L. Brash. Adsorption of fibrinogen on glass: reversibility aspects. J. Colloid. Interf. Sci. 82:217–225, 1981.CrossRefGoogle Scholar
  8. 8.
    Chen, H. Y., and J. Lahann. Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings. Anal. Chem. 77:6909–6914, 2005.CrossRefGoogle Scholar
  9. 9.
    Coy, D. L., M. Wagenbach, and J. Howard. Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 274:3667–3671, 1999.CrossRefGoogle Scholar
  10. 10.
    Estephan, Z. G., J. B. Schlenoff, and P. S. Schlenoff. Zwitteration as an alternative to PEGylation. Langmuir 27:6794–6800, 2011.Google Scholar
  11. 11.
    Fischer, T., A. Agarwal, and H. Hess. A smart dust biosensor powered by kinesin motors. Nat. Nanotechnol. 4:162–166, 2009.CrossRefGoogle Scholar
  12. 12.
    Gombotz, W. R., W. Guanghui, T. A. Horbett, and A. S. Hoffman. Protein adsorption to poly(ethylene oxide) surfaces. J. Biomed. Mater. Res. 25:1547–1562, 1991.CrossRefGoogle Scholar
  13. 13.
    Gon, S., M. Bendersky, J. L. Ross, and M. M. Santore. Manipulating protein adsorption using a patchy protein-resistant brush. Langmuir 26:12147–12154, 2010.CrossRefGoogle Scholar
  14. 14.
    Hansson, K. M., S. Tosatti, J. Isaksson, J. Wettero, M. Textor, T. L. Lindahl, and P. Tengvall. Whole blood coagulation on protein adsorption-resistant PEG and peptide functionalised PEG-coated titanium surfaces. Biomaterials 26:861–872, 2005.CrossRefGoogle Scholar
  15. 15.
    Hoa, X. D., A. G. Kirk, and M. Tabrizian. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron. 23:151–160, 2007.CrossRefGoogle Scholar
  16. 16.
    Howard, J., A. J. Hudspeth, and R. D. Vale. Movement of microtubules by single kinesin molecules. Nature 342:154–158, 1989.CrossRefGoogle Scholar
  17. 17.
    Hucknall, A., D.-H. Kim, S. Rangarajan, R. T. Hill, W. M. Reichert, and A. Chilkoti. Simple fabrication of antibody microarrays on nonfouling polymer brushes with femtomolar sensitivity for protein analytes in serum and blood. Adv. Mater. 21:1968–1971, 2009.CrossRefGoogle Scholar
  18. 18.
    Hucknall, A., S. Rangarajan, and A. Chilkoti. In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv. Mater. 21:2441–2446, 2009.CrossRefGoogle Scholar
  19. 19.
    Ionov, L., A. Synytska, E. Kaul, and S. Diez. Protein-resistant polymer coatings based on surface-adsorbed poly (aminoethyl methacrylate)/poly (ethylene glycol) copolymers. Biomacromolecules 11:233–237, 2010.CrossRefGoogle Scholar
  20. 20.
    Jeune-Smith, Y., and H. Hess. Engineering the length distribution of microtubules polymerized in vitro. Soft Matter 6:1778–1784, 2010.CrossRefGoogle Scholar
  21. 21.
    Jiang, S. Y., and Z. Q. Cao. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22:920–932, 2010.CrossRefGoogle Scholar
  22. 22.
    Katira, P., A. Agarwal, T. Fischer, H.-Y. Chen, X. Jiang, J. Lahann, and H. Hess. Quantifying the performance of protein-resisting surfaces at ultra-low protein coverages using kinesin motor proteins as probes. Adv. Mater. 19:3171–3176, 2007.CrossRefGoogle Scholar
  23. 23.
    Kwak, D., Y. G. Wu, and T. A. Horbett. Fibrinogen and von Willebrand’s factor adsorption are both required for platelet adhesion from sheared suspensions to polayethylene preadsorbed with blood plasma. J. Biomed. Mater. Res. A 74A:69–83, 2005.CrossRefGoogle Scholar
  24. 24.
    Ma, H., J. Hyun, P. Stiller, and A. Chilkoti. “Non-fouling” oligo (ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv. Mater. 16:338–341, 2004.CrossRefGoogle Scholar
  25. 25.
    Mosesson, M. W. Fibrin polymerization and its regulatory role in hemostasis. J. Lab. Clin. Med. 116:8–17, 1990.Google Scholar
  26. 26.
    Ozeki, T., V. Verma, M. Uppalapati, Y. Suzuki, M. Nakamura, J. M. Catchmark, and W. O. Hancock. Surface-bound casein modulates the adsorption and activity of kinesin on SiO2 surfaces. Biophys. J. 96:3305–3318, 2009.CrossRefGoogle Scholar
  27. 27.
    Rodriguez-Pardo, L., J. F. Rodriguez, C. Gabrielli, and R. Brendel. Sensitivity, noise, and resolution in QCM sensors in liquid media. IEEE Sens. J. 5:1251–1257, 2005.CrossRefGoogle Scholar
  28. 28.
    Skopp, J. Derivation of the Freundlich Adsorption Isotherm from Kinetics. J. Chem. Educ. 86:1341–1343, 2009.CrossRefGoogle Scholar
  29. 29.
    Suh, K. Y., R. Langer, and J. Lahann. A novel photodefinable reactive polymer coating and its use for microfabrication of hydrogel elements. Adv. Mater. 16:1401–1405, 2004.CrossRefGoogle Scholar
  30. 30.
    Zhang, M. Q., T. Desai, and M. Ferrari. Proteins and cells on PEG immobilized silicon surfaces. Biomaterials 19:953–960, 1998.CrossRefGoogle Scholar
  31. 31.
    Zhang, Z., M. Zhang, S. F. Chen, T. A. Horbetta, B. D. Ratner, and S. Y. Jiang. Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29:4285–4291, 2008.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Ashutosh Agarwal
    • 1
  • Elizabeth Luria
    • 2
  • Xiaopei Deng
    • 3
  • Joerg Lahann
    • 3
  • Henry Hess
    • 1
  1. 1.Department of Biomedical EngineeringColumbia UniversityNew YorkUSA
  2. 2.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Department of Chemical Engineering, Department of Materials Engineering, and Macromolecular Science and Engineering ProgramUniversity of MichiganAnn ArborUSA

Personalised recommendations