Cellular and Molecular Bioengineering

, Volume 5, Issue 3, pp 307–319

Cell Adhesion on Micro-Structured Fibronectin Gradients Fabricated by Multiphoton Excited Photochemistry

  • Xiyi Chen
  • Yuan-Deng Su
  • Visar Ajeti
  • Shean-Jen Chen
  • Paul J. Campagnola
Article

Abstract

Concentration gradients of ECM proteins play active roles in many areas of cell biology including wound healing and metastasis. They may also form the basis of tissue engineering scaffolds, as these can direct cell adhesion and migration and promote new matrix synthesis. To better understand cell–matrix interactions on attractive gradients, we have used multiphoton excited (MPE) photochemistry to fabricate covalently linked micro-structured gradients from fibronectin (FN). The gradient design is comprised of a parallel series of individual linear gradients with overall dimensions of approximately 800 × 800 µm, where a linear dynamic range of nearly 10-fold in concentration was achieved. The adhesion dynamics of 3T3 fibroblasts were investigated, where the cell morphology and actin cytoskeleton became increasingly elongated and aligned with the direction of the gradient at increasing protein concentration. Moreover, the cell morphologies are distinct when adhered to regions of differing FN concentration but with similar topography. These results show that the fabrication approach allows investigating the roles of contact guidance and ECM cues on the cell–matrix interactions. We suggest this design overcomes some of the limitations with other fabrication methods, especially in terms of 3D patterning capabilities, and will serve as a new tool to study cell–matrix interactions.

Keywords

ECM Crosslinking Contact guidance Morphology Cytoskeleton 

References

  1. 1.
    Basu, S., and P. J. Campagnola. Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation. J. Biomed. Mater. Res. 71A(2):359–368, 2004.CrossRefGoogle Scholar
  2. 2.
    Basu, S., L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola. Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation. Biomacromolecules 6:1465–1474, 2005.CrossRefGoogle Scholar
  3. 3.
    Basu, S., C. W. Wolgemuth, and P. J. Campagnola. Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via multi-photon excited crosslinking. Biomacromolecules 5:2347–2357, 2004.CrossRefGoogle Scholar
  4. 4.
    Belisle, J. M., J. P. Correia, P. W. Wiseman, T. E. Kennedy, and S. Costantino. Patterning protein concentration using laser-assisted adsorption by photobleaching, LAPAP. Lab Chip 8(12):2164–2167, 2008.CrossRefGoogle Scholar
  5. 5.
    Brandley, B. K., and R. L. Schnaar. Tumor cell haptotaxis on covalently immobilized linear and exponential gradients of a cell adhesion peptide. Dev. Biol. 135(1):74–86, 1989.CrossRefGoogle Scholar
  6. 6.
    Burdick, J. A., A. Khademhosseini, and R. Langer. Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20(13):5153–5156, 2004.CrossRefGoogle Scholar
  7. 7.
    Campagnola, P. J., A. R. Howell, D. Delguidas, G. A. Epling, J. D. Pitts, and S. L. Goodman. 3-Dimensional sub-micron polymerization of acrylamide by multi-photon excitation of xanthene dyes. Macromolecules 33:1511–1513, 2000.CrossRefGoogle Scholar
  8. 8.
    Chen, X., M. A. Brewer, C. Zou, and P. J. Campagnola. Adhesion and migration of ovarian cancer cells on crosslinked laminin fibers nanofabricated by multiphoton excited photochemistry. Integr. Biol. 1:469–476, 2009.CrossRefGoogle Scholar
  9. 9.
    Cunningham, L. P., M. P. Veilleux, and P. J. Campagnola. Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach. Opt. Express 14:8613–8621, 2006.CrossRefGoogle Scholar
  10. 10.
    Dalby, M. J., M. O. Riehle, D. S. Sutherland, H. Agheli, and A. S. Curtis. Fibroblast response to a controlled nanoenvironment produced by colloidal lithography. J. Biomed. Mater. Res. 69A(2):314–322, 2004.CrossRefGoogle Scholar
  11. 11.
    DeLong, S. A., A. S. Gobin, and J. L. West. Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J. Controlled Release 109(1–3):139–148, 2005.CrossRefGoogle Scholar
  12. 12.
    DeLong, S. A., J. J. Moon, and J. L. West. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26(16):3227–3234, 2005.CrossRefGoogle Scholar
  13. 13.
    Dertinger, S. K., X. Jiang, Z. Li, V. N. Murthy, and G. M. Whitesides. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl Acad. Sci. USA 99(20):12542–12547, 2002.CrossRefGoogle Scholar
  14. 14.
    Doyle, A. D., F. W. Wang, K. Matsumoto, and K. M. Yamada. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184(4):481–490, 2009.CrossRefGoogle Scholar
  15. 15.
    Fricke, R., P. D. Zentis, L. T. Rajappa, B. Hofmann, M. Banzet, A. Offenhausser, and S. H. Meffert. Axon guidance of rat cortical neurons by microcontact printed gradients. Biomaterials 32(8):2070–2076, 2011.CrossRefGoogle Scholar
  16. 16.
    Gallant, N. D., K. E. Michael, and A. J. Garcia. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 16(9):4329–4340, 2005.CrossRefGoogle Scholar
  17. 17.
    Garcia, A. J., and N. D. Gallant. Stick and grip: measurement systems and quantitative analyses of integrin-mediated cell adhesion strength. Cell Biochem. Biophys. 39(1):61–73, 2003.CrossRefGoogle Scholar
  18. 18.
    Gunawan, R. C., E. R. Choban, J. E. Conour, J. Silvestre, L. B. Schook, H. R. Gaskins, D. E. Leckband, and P. J. Kenis. Regiospecific control of protein expression in cells cultured on two-component counter gradients of extracellular matrix proteins. Langmuir 21(7):3061–3068, 2005.CrossRefGoogle Scholar
  19. 19.
    Gunawan, R. C., J. Silvestre, H. R. Gaskins, P. J. Kenis, and D. E. Leckband. Cell migration and polarity on microfabricated gradients of extracellular matrix proteins. Langmuir 22(9):4250–4258, 2006.CrossRefGoogle Scholar
  20. 20.
    Isenberg, B. C., P. A. Dimilla, M. Walker, S. Kim, and J. Y. Wong. Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys. J. 97(5):1313–1322, 2009.CrossRefGoogle Scholar
  21. 21.
    Jeon, N. L., S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides. Generation of solution and surface gradients using microfluidic systems. Langmuir 16(22):8311–8316, 2000.CrossRefGoogle Scholar
  22. 22.
    Kaehr, B., R. Allen, D. J. Javier, J. Currie, and J. B. Shear. Guiding neuronal development with in situ microfabrication. Proc. Natl Acad. Sci. USA 101(46):16104–16108, 2004.CrossRefGoogle Scholar
  23. 23.
    Kaunas, R., P. Nguyen, S. Usami, and S. Chien. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc. Natl Acad. Sci. USA 102(44):15895–15900, 2005.CrossRefGoogle Scholar
  24. 24.
    LaFratta, C. N., D. Lim, K. O’Malley, T. Baldacchini, and J. T. Fourkas. Direct laser patterning of conductive wires on three-dimensional polymeric microstructures. Chem. Mater. 18(8):2038–2042, 2006.CrossRefGoogle Scholar
  25. 25.
    Mai, J., L. Fok, H. Gao, X. Zhang, and M. M. Poo. Axon initiation and growth cone turning on bound protein gradients. J. Neurosci. 29(23):7450–7458, 2009.CrossRefGoogle Scholar
  26. 26.
    Maruo, S., O. Nakamura, and S. Kawata. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22:132–134, 1997.CrossRefGoogle Scholar
  27. 27.
    Mooney, J. F., A. J. Hunt, J. R. McIntosh, C. A. Liberko, D. M. Walba, and C. T. Rogers. Patterning of functional antibodies and other proteins by photolithography of silane monolayers. Proc. Natl Acad. Sci. USA 93(22):12287–12291, 1996.CrossRefGoogle Scholar
  28. 28.
    Neckers, D. C. Rose Bengal. J. Photochem. Photobiol. A 47:1–29, 1989.CrossRefGoogle Scholar
  29. 29.
    Pins, G. D., K. A. Bush, L. P. Cunningham, and P. J. Campagnola. Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology. J. Biomed. Mater. Res. 78A:194–204, 2006.CrossRefGoogle Scholar
  30. 30.
    Pitts, J. D., P. J. Campagnola, G. A. Epling, and S. L. Goodman. Reaction efficiencies for sub-micron multi-photon freeform fabrications of proteins and polymers with applications in sustained release. Macromolecules 33:1514–1523, 2000.CrossRefGoogle Scholar
  31. 31.
    Pitts, J. D., A. R. Howell, R. Taboada, I. Banerjee, J. Wang, S. L. Goodman, and P. J. Campagnola. New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: bovine serum albumin and type 1 collagen. Photochem. Photobiol. 76(2):135–144, 2002.CrossRefGoogle Scholar
  32. 32.
    Plummer, S. T., Q. Wang, P. W. Bohn, R. Stockton, and M. A. Schwartz. Electrochemically derived gradients of the extracellular matrix protein fibronectin on gold. Langmuir 19(18):7528–7536, 2003.CrossRefGoogle Scholar
  33. 33.
    Rhoads, D. S., and J. L. Guan. Analysis of directional cell migration on defined FN gradients: role of intracellular signaling molecules. Exp. Cell Res. 313(18):3859–3867, 2007.CrossRefGoogle Scholar
  34. 34.
    Slater, J. H., and W. Frey. Nanopatterning of fibronectin and the influence of integrin clustering on endothelial cell spreading and proliferation. J. Biomed. Mater. Res. A 87A(1):176–195, 2008.CrossRefGoogle Scholar
  35. 35.
    Sridhar, M., S. Basu, V. L. Scranton, and P. J. Campagnola. Construction of a laser scanning microscope for multiphoton excited optical fabrication. Rev. Sci. Instrum. 74(7):3474–3477, 2003.CrossRefGoogle Scholar
  36. 36.
    Swartz, M. A. Signaling in morphogenesis: transport cues in morphogenesis. Curr. Opin. Biotechnol. 14(5):547–550, 2003.CrossRefGoogle Scholar
  37. 37.
    Teixeira, A. I., G. A. Abrams, P. J. Bertics, C. J. Murphy, and P. F. Nealey. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116:1881–1892, 2003.CrossRefGoogle Scholar
  38. 38.
    Teixeira, A. I., P. F. Nealey, and C. J. Murphy. Responses of human keratocytes to micro- and nanostructured substrates. J. Biomed. Mater. Res. 71A(3):369–376, 2004.CrossRefGoogle Scholar
  39. 39.
    von Philipsborn, A. C., S. Lang, J. Loeschinger, A. Bernard, C. David, D. Lehnert, F. Bonhoeffer, and M. Bastmeyer. Growth cone navigation in substrate-bound ephrin gradients. Development 133(13):2487–2495, 2006.CrossRefGoogle Scholar
  40. 40.
    Wang, S., C. Wong Po Foo, A. Warrier, M. M. Poo, S. C. Heilshorn, and X. Zhang. Gradient lithography of engineered proteins to fabricate 2D and 3D cell culture microenvironments. Biomed. Microdevices 11(5):1127–1134, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Xiyi Chen
    • 1
  • Yuan-Deng Su
    • 2
  • Visar Ajeti
    • 1
  • Shean-Jen Chen
    • 2
  • Paul J. Campagnola
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations