Cellular and Molecular Bioengineering

, Volume 5, Issue 2, pp 155–164 | Cite as

Mechanical Tension Modulates Local and Global Vesicle Dynamics in Neurons

  • W. W. Ahmed
  • T. C. Li
  • S. S. Rubakhin
  • A. Chiba
  • J. V. Sweedler
  • T. A. SaifEmail author
BMES 2011 Outstanding Papers


Growing experimental evidence suggests that mechanical tension plays a significant role in determining the growth, guidance, and function of neurons. Mechanical tension in axons contributes to neurotransmitter clustering at the Drosophila neuromuscular junction (NMJ) and is actively regulated by neurons both in vitro and in vivo. In this work, we applied mechanical strain on in vivo Drosophila neurons and in vitro Aplysia neurons and studied their vesicle dynamics by live-imaging. Our experiments show that mechanical stretch modulates the dynamics of vesicles in two different model systems: (1) The global accumulation of synaptic vesicles (SV) at the Drosophila NMJ and (2) the local motion of individual large dense core vesicles (LDCV) in Aplysia neurites. Specifically, a sustained stretch results in enhanced SV accumulation in the Drosophila NMJ. This increased SV accumulation occurs in the absence of extracellular Ca2+, plateaus after approximately 50 min, and persists for at least 30 min after stretch is reduced. On the other hand, mechanical compression in Aplysia neurites immediately disrupts LDCV motion, leading to decreased range and processivity. This impairment of LDCV motion persists for at least 15 min after tension is restored. These results show that mechanical stretch modulates both local and global vesicle dynamics and strengthens the notion that tension serves a role in regulating neuronal function.


Cell mechanics Subcellular Live-imaging Vesicle tracking Drosophila Aplysia 



The authors thank Dr. J. Rajagopalan for discussions concerning the manuscript and X. Wang for preparation of neuronal cultures. W. W. Ahmed thanks the Arnold and Mabel Foundation and the Beckman Institute for Advanced Science and Technology for their generous support. This work was supported by the National Institutes of Health (NINDS NS031609, R25 CA154015) and the National Science Foundation (CMMI 0800870, ECCS 0801928, DGE 0965918, CBET 0939511). Microfabrication facilities were used at the Micro and Nanotechnology Laboratory and imaging facilities were used at the Institute for Genomic Biology at the University of Illinois at Urbana-Champaign.

Supplementary material

12195_2012_223_MOESM1_ESM.avi (4.4 mb)
Movie S1 (AVI 4527 kb)
12195_2012_223_MOESM2_ESM.avi (4.4 mb)
Movie S2 (AVI 4527 kb)
12195_2012_223_MOESM3_ESM.avi (4.4 mb)
Movie S3 1 (AVI 4527 kb)
12195_2012_223_MOESM4_ESM.avi (4.4 mb)
Movie S4 (AVI 4527 kb)


  1. 1.
    Abramoff, M. D., P. J. Magalhaes, and S. J. Ram. Image processing with ImageJ. Biophoton. Int. 11(7):36–41, 2004.Google Scholar
  2. 2.
    Ahmed, W. W., M. H. Kural, and T. A. Saif. A novel platform for in situ investigation of cells and tissues under mechanical strain. Acta Biomater. 6(8):2979–2990, 2010.CrossRefGoogle Scholar
  3. 3.
    Ayali, A. The function of mechanical tension in neuronal and network development. Integr. Biol. 2(4):178–182, 2010.CrossRefGoogle Scholar
  4. 4.
    Bernal, R., P. A. Pullarkat, and F. Melo. Mechanical properties of axons. Phys. Rev. Lett. 99(1):018301, 2007.CrossRefGoogle Scholar
  5. 5.
    Bixby, J. L. Ultrastructural observations on synapse elimination in neonatal rabbit skeletal muscle. J. Neurocytol. 10(1):81–100, 1981.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bloom, O., E. Evergren, N. Tomilin, O. Kjaerulff, P. Low, L. Brodin, V. A. Pieribone, P. Greengard, and O. Shupliakov. Colocalization of synapsin and actin during synaptic vesicle recycling. J. Cell Biol. 161(4):737–747, 2003.CrossRefGoogle Scholar
  7. 7.
    Bray, D. Mechanical tension produced by nerve cells in tissue culture. J. Cell Sci. 37:391–410, 1979.Google Scholar
  8. 8.
    Budnik, V., and C. Ruiz-Canada. The Fly Neuromuscular Junction. San Diego: Elsevier, p. 421, 2006.Google Scholar
  9. 9.
    Chen, B. M., and A. D. Grinnell. Integrins and modulation of transmitter release from motor nerve terminals by stretch. Science 269(5230):1578–1580, 1995.CrossRefGoogle Scholar
  10. 10.
    Chen, B. M., and A. D. Grinnell. Kinetics, Ca2+ dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals. J. Neurosci. 17(3):904–916, 1997.Google Scholar
  11. 11.
    Cingolani, L. A., and Y. Goda. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9(5):344–356, 2008.CrossRefGoogle Scholar
  12. 12.
    Ciobanu, L., S. S. Rubakhin, J. N. Stuart, R. R. Fuller, A. G. Webb, and J. V. Sweedler. Characterization of the physicochemical parameters of dense core atrial gland and lucent red hemiduct vesicles in Aplysia californica. Anal. Chem. 76(8):2331–2335, 2004.CrossRefGoogle Scholar
  13. 13.
    Dennerll, T. J., P. Lamoureux, R. E. Buxbaum, and S. R. Heidemann. The cytomechanics of axonal elongation and retraction. J. Cell Biol. 109(6):3073–3083, 1989.CrossRefGoogle Scholar
  14. 14.
    Dillon, C., and Y. Goda. The actin cytoskeleton: integrating form and function at the synapse. Annu. Rev. Neurosci. 28(1):25–55, 2005.CrossRefGoogle Scholar
  15. 15.
    Duffy, J. B. GAL4 system in Drosophila: a fly geneticist’s swiss army knife. Genesis 34:1–15, 2002.CrossRefGoogle Scholar
  16. 16.
    Fatt, P., and B. Katz. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117(1):109–128, 1952.Google Scholar
  17. 17.
    Forscher, P., and S. J. Smith. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 107(4):1505–1516, 1988.CrossRefGoogle Scholar
  18. 18.
    Franze, K., J. Gerdelmann, M. Weick, T. Betz, S. Pawlizak, M. Lakadamyali, J. Bayer, K. Rillich, M. Gogler, Y. Lu, A. Reichenbach, P. A. Janmey, and J. A. Kas. Neurite branch retraction is caused by a threshold-dependent mechanical impact. Biophys. J. 97(7):1883–1890, 2009.CrossRefGoogle Scholar
  19. 19.
    Franze, K., and J. Guck. The biophysics of neuronal growth. Rep. Prog. Phys. 73:094601, 2010.CrossRefGoogle Scholar
  20. 20.
    Franze, K., A. Reichenbach, and J. Kas. Biomechanics of the CNS. In: Mechanosensitivity of the Nervous System, Vol. 10, edited by A. Kamkin, and I. Kiseleva. Dordrecht: Springer, 2008, pp. 173–213.Google Scholar
  21. 21.
    Gittes, F., E. Meyhofer, S. Baek, and J. Howard. Directional loading of the kinesin motor molecule as it buckles a microtubule. Biophys. J. 70(1):418–429, 1996.CrossRefGoogle Scholar
  22. 22.
    Goldberg, D. J., and D. W. Burmeister. Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy. J. Cell Biol. 103(5):1921–1931, 1986.CrossRefGoogle Scholar
  23. 23.
    Grinnell, A. D., B. M. Chen, A. Kashani, J. Lin, K. Suzuki, and Y. Kidokoro. The role of integrins in the modulation of neurotransmitter release from motor nerve terminals by stretch and hypertonicity. J. Neurocytol. 32(5–8):489–503, 2003.CrossRefGoogle Scholar
  24. 24.
    Hawkins, R. D., E. R. Kandel, and S. A. Siegelbaum. Learning to modulate transmitter release: themes and variations in synaptic plasticity. Annu. Rev. Neurosci. 16:625–665, 1993.CrossRefGoogle Scholar
  25. 25.
    Heidemann, S. R., and R. E. Buxbaum. Tension as a regulator and integrator of axonal growth. Cell Motil. Cytoskelet. 17(1):6–10, 1990.CrossRefGoogle Scholar
  26. 26.
    Hummon, A. B., A. Amare, and J. V. Sweedler. Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrom. Rev. 25(1):77–98, 2006.CrossRefGoogle Scholar
  27. 27.
    Kamber, D., H. Erez, and M. E. Spira. Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone. Exp. Neurol. 219(1):112–125, 2009.CrossRefGoogle Scholar
  28. 28.
    Keshishian, H., K. S. Broadie, A. Chiba, and M. Bate. The drosophila neuromuscular junction: a model system for studying synaptic development and function. Annu. Rev. Neurosci. 19:545–575, 1996.CrossRefGoogle Scholar
  29. 29.
    Korneliussen, H., and J. K. Jansen. Morphological aspects of the elimination of polyneuronal innervation of skeletal muscle fibres in newborn rats. J. Neurocytol. 5(8):591–604, 1976.CrossRefGoogle Scholar
  30. 30.
    Lamoureux, P., R. E. Buxbaum, and S. R. Heidemann. Direct evidence that growth cones pull. Nature 340(6229):159–162, 1989.CrossRefGoogle Scholar
  31. 31.
    Morrison-Graham, K. An anatomical and electrophysiological study of synapse elimination at the developing frog neuromuscular junction. Dev. Biol. 99(2):298–311, 1983.CrossRefGoogle Scholar
  32. 32.
    O’Toole, M., P. Lamoureux, and K. E. Miller. A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of outgrowth. Biophys. J. 94(7):2610–2620, 2008.CrossRefGoogle Scholar
  33. 33.
    O’Toole, M., R. Latham, R. M. Baqri, and K. E. Miller. Modeling mitochondrial dynamics during in vivo axonal elongation. J. Theor. Biol. 255(4):369–377, 2008.CrossRefGoogle Scholar
  34. 34.
    O’Toole, M., and K. E. Miller. The role of stretching in slow axonal transport. Biophys. J. 100(2):351–360, 2011.CrossRefGoogle Scholar
  35. 35.
    Owald, D., and S. J. Sigrist. Assembling the presynaptic active zone. Curr. Opin. Neurobiol. 19(3):311–318, 2009.CrossRefGoogle Scholar
  36. 36.
    Pender, N., and C. A. McCulloch. Quantitation of actin polymerization in two human fibroblast sub-types responding to mechanical stretching. J. Cell Sci. 100:187–193, 1991.Google Scholar
  37. 37.
    Pfister, B. J., D. P. Bonislawski, D. H. Smith, and A. S. Cohen. Stretch-grown axons retain the ability to transmit active electrical signals. FEBS Lett. 580(14):3525–3531, 2006.CrossRefGoogle Scholar
  38. 38.
    Pfister, B. J., A. Iwata, D. F. Meaney, and D. H. Smith. Extreme stretch growth of integrated axons. J. Neurosci. 24(36):7978–7983, 2004.CrossRefGoogle Scholar
  39. 39.
    Putnam, A. J., K. Schultz, and D. J. Mooney. Control of microtubule assembly by extracellular matrix and externally applied strain. AJP—Cell Physiol. 280(3):C556–C564, 2001.Google Scholar
  40. 40.
    Rajagopalan, J., A. Tofangchi, and T. A. Saif. Drosophila neurons actively regulate axonal tension in vivo. Biophys. J. 99(10):3208–3215, 2010.CrossRefGoogle Scholar
  41. 41.
    Rogers, S. S., T. A. Waigh, X. Zhao, and J. R. Lu. Precise particle tracking against a complicated background: polynomial fitting with gaussian weight. Phys. Biol. 4:220–227, 2007.CrossRefGoogle Scholar
  42. 42.
    Romanova, E. V., S. P. Oxley, S. S. Rubakhin, P. W. Bohn, and J. V. Sweedler. Self-assembled monolayers of alkanethiols on gold modulate electrophysiological parameters and cellular morphology of cultured neurons. Biomaterials 27(8):1665–1669, 2006.CrossRefGoogle Scholar
  43. 43.
    Rubakhin, S. S., R. W. Garden, R. R. Fuller, and J. V. Sweedler. Measuring the peptides in individual organelles with mass spectrometry. Nat. Biotechnol. 18(2):172–175, 2000.CrossRefGoogle Scholar
  44. 44.
    Shemesh, O. A., H. Erez, I. Ginzburg, and M. E. Spira. Tau-induced traffic jams reflect organelles accumulation at points of microtubule polar mismatching. Traffic 9(4):458–471, 2008.CrossRefGoogle Scholar
  45. 45.
    Shemesh, O. A., and M. E. Spira. Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy. Acta Neuropathol. 119(2):235–248, 2010.CrossRefGoogle Scholar
  46. 46.
    Siechen, S., S. Yang, A. Chiba, and T. A. Saif. Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Natl Acad. Sci. USA 106(31):12611–12616, 2009.CrossRefGoogle Scholar
  47. 47.
    Sigrist, S. J., D. F. Reiff, P. R. Thiel, J. R. Steinert, and C. M. Schuster. Experience-dependent strengthening of Drosophila neuromuscular junctions. J. Neurosci. 23(16):6546–6556, 2003.Google Scholar
  48. 48.
    Smith, D. H., J. A. Wolf, and D. F. Meaney. A new strategy to produce sustained growth of central nervous system axons: continuous mechanical tension. Tissue Eng. 7(2):131–139, 2001.CrossRefGoogle Scholar
  49. 49.
    Suter, D. M., L. D. Errante, V. Belotserkovsky, and P. Forscher. The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling. J. Cell Biol. 141(1):227–240, 1998.CrossRefGoogle Scholar
  50. 50.
    Suter, D. M., and P. Forscher. Transmission of growth cone traction force through apCAM-cytoskeletal linkages is regulated by src family tyrosine kinase activity. J. Cell Biol. 155(3):427–438, 2001.CrossRefGoogle Scholar
  51. 51.
    Suter, D. M., and K. E. Miller. The emerging role of forces in axonal elongation. Prog. Neurobiol. 94:91–101, 2011.CrossRefGoogle Scholar
  52. 52.
    Weiss, P. Experiments on cell and axon orientation in vitro; the role of colloidal exudates in tissue organization. J. Exp. Zool. 100:353–386, 1945.CrossRefGoogle Scholar
  53. 53.
    Zhang, Y. Q., C. K. Rodesch, and K. S. Broadie. Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34(1–2):142–145, 2002.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • W. W. Ahmed
    • 1
    • 2
  • T. C. Li
    • 3
  • S. S. Rubakhin
    • 2
    • 4
  • A. Chiba
    • 3
  • J. V. Sweedler
    • 2
    • 4
  • T. A. Saif
    • 1
    • 2
    • 5
    Email author
  1. 1. Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-Champaign, 2101D Mechanical Engineering LaboratoryUrbanaUSA
  2. 2.Beckman Institute for Advanced Science and TechnologyUniversity of IllinoisUrbanaUSA
  3. 3.Department of BiologyUniversity of MiamiCoral GablesUSA
  4. 4.Department of ChemistryUniversity of IllinoisUrbanaUSA
  5. 5.Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana-Champaign, 2101D Mechanical Engineering LaboratoryUrbanaUSA

Personalised recommendations