Cellular and Molecular Bioengineering

, Volume 4, Issue 4, pp 579–590

Bone Physiology, Biomaterial and the Effect of Mechanical/Physical Microenvironment on Mesenchymal Stem Cell Osteogenesis

  • Xiaoling Liao
  • Shaoying Lu
  • Yue Zhuo
  • Christina Winter
  • Wenfeng Xu
  • Bo Li
  • Yingxiao Wang


In this review, we summarize the research progress in understanding the physiology of bone cells interacting with different mechanical/physical environments during bone tissue regeneration/repair. We first introduce the cellular composition of the bone tissue and the mechanism of the physiological bone regeneration/repair process. We then describe the properties and development of biomaterials for bone tissue engineering, followed by the highlighting of research progresses on the cellular response to mechanical environmental cues. Finally, several latest advancements in bone tissue regeneration and remaining challenges in the field are discussed for future research directions.


Mechanical environment Bone repair Tissue engineering Scaffolds Bone cells 


  1. 1.
    Agrawal, C. M., and R. B. Ray. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55(2):141–150, 2001.CrossRefGoogle Scholar
  2. 2.
    Albright, F. The effect of hormones on osteogenesis in man. Recent Prog. Horm. Res. 1:293–353, 1947.Google Scholar
  3. 3.
    Bacabac, R. G., et al. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem. Biophys. Res. Commun. 315(4):823–829, 2004.CrossRefGoogle Scholar
  4. 4.
    Bakker, A. D., et al. Different responsiveness to mechanical stress of bone cells from osteoporotic versus osteoarthritic donors. Osteoporos. Int. 17(6):827–833, 2006.CrossRefGoogle Scholar
  5. 5.
    Blecha, L. D., L. Rakotomanana, F. Razafimahery, A. Terrier, and D. P. Pioletti. Targeted mechanical properties for optimal fluid motion inside artificial bone substitutes. J. Orthopaed. Res. 27:1082–1087, 2009.CrossRefGoogle Scholar
  6. 6.
    Blecha, L. D., et al. Mechanical interaction between cells and fluid for bone tissue engineering scaffold: modulation of the interfacial shear stress. J. Biomech. 43(5):933–937, 2010.CrossRefGoogle Scholar
  7. 7.
    Boyce, B. F., Z. Yao, and L. Xing. Osteoclasts have multiple roles in bone in addition to bone resorption. Crit. Rev. Eukaryot. Gene Expr. 19(3):171–180, 2009.Google Scholar
  8. 8.
    Buenzli, P. R., P. Pivonka, and D. W. Smith. Spatio-temporal structure of cell distribution in cortical bone multicellular units: a mathematical model. Bone 48(4):918–926, 2011.CrossRefGoogle Scholar
  9. 9.
    Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9(5):641–650, 1991.CrossRefGoogle Scholar
  10. 10.
    Caplan, A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213(2):341–347, 2007.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Caplan, A. I. New era of cell-based orthopedic therapies. Tissue Eng. B Rev. 15(2):195–200, 2009.CrossRefGoogle Scholar
  12. 12.
    Celil Aydemir, A. B., et al. Nuclear factor of activated T cells mediates fluid shear stress- and tensile strain-induced Cox2 in human and murine bone cells. Bone 46(1):167–175, 2010.CrossRefGoogle Scholar
  13. 13.
    Chappard, D., et al. Sinus lift augmentation and beta-TCP: a microCT and histologic analysis on human bone biopsies. Micron 41(4):321–326, 2010.CrossRefGoogle Scholar
  14. 14.
    Christoph, R., et al. In vitro proliferation of human osteogenic cells in presence of different commercial bone substitute materials combined with enamel matrix derivatives. Head Face Med. 5(23):1–9, 2009.Google Scholar
  15. 15.
    Deng, Z. L., et al. Regulation of osteogenic differentiation during skeletal development. Front. Biosci. 13:2001–2021, 2008.CrossRefGoogle Scholar
  16. 16.
    Deschaseaux, F., L. Sensebe, and D. Heymann. Mechanisms of bone repair and regeneration. Trends Mol. Med. 15(9):417–429, 2009.CrossRefGoogle Scholar
  17. 17.
    Donahue, T. L., et al. Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransport. J. Biomech. 36(9):1363–1371, 2003.CrossRefGoogle Scholar
  18. 18.
    Engler, A. J., et al. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.CrossRefGoogle Scholar
  19. 19.
    Faghihi, S., et al. The significance of crystallographic texture of titanium alloy substrates on pre-osteoblast responses. Biomaterials 27(19):3532–3539, 2006.Google Scholar
  20. 20.
    Franceschi, R. T., and G. Xiao. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J. Cell. Biochem. 88(3):446–454, 2003.CrossRefGoogle Scholar
  21. 21.
    Fu, H., et al. Osteoblast differentiation in vitro and in vivo promoted by Osterix. J. Biomed. Mater. Res. A 83(3):770–778, 2007.Google Scholar
  22. 22.
    Gao, J., and A. I. Caplan. Mesenchymal stem cells and tissue engineering for orthopaedic surgery. Chir. Organ. Mov. 88(3):305–316, 2003.Google Scholar
  23. 23.
    Gazdag, A. R., et al. Alternatives to autogenous bone graft: efficacy and indications. J. Am. Acad. Orthop. Surg. 3(1):1–8, 1995.Google Scholar
  24. 24.
    Gersbach, C. A., J. E. Phillips, and A. J. Garcia. Genetic engineering for skeletal regenerative medicine. Annu. Rev. Biomed. Eng. 9:87–119, 2007.CrossRefGoogle Scholar
  25. 25.
    Gotz, H. E., et al. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials 25(18):4057–4064, 2004.CrossRefGoogle Scholar
  26. 26.
    Haasper, C., et al. Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp. Toxicol. Pathol. 59(6):355–363, 2008.Google Scholar
  27. 27.
    Hacking, S. A., et al. The response of mineralizing culture systems to microtextured and polished titanium surfaces. J. Orthop. Res. 26(10):1347–1354, 2008.CrossRefGoogle Scholar
  28. 28.
    Hallab, N. J., et al. Cell adhesion to biomaterials: correlations between surface charge, surface roughness, adsorbed protein, and cell morphology. J. Long Term Eff. Med. Implants 5(3):209–231, 1995.Google Scholar
  29. 29.
    Hatano, K., et al. Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene. Bone 25(4):439–445, 1999.CrossRefGoogle Scholar
  30. 30.
    Hench, L. L. Biomaterials. Science 208(4446):826–831, 1980.CrossRefGoogle Scholar
  31. 31.
    Hench, L. L., and J. M. Polak. Third-generation biomedical materials. Science 295(5557):1014–1017, 2002.CrossRefGoogle Scholar
  32. 32.
    Hench, L. L., and I. Thompson. Twenty-first century challenges for biomaterials. J. R. Soc. Interface 7(Suppl 4):S379–S391, 2010.CrossRefGoogle Scholar
  33. 33.
    Huang, W., et al. PHBV microspheres–PLGA matrix composite scaffold for bone tissue engineering. Biomaterials 31(15):4278–4285, 2010.CrossRefGoogle Scholar
  34. 34.
    Huber, F.-X., N. McArthur, L. Heimann, E. Dingeldein, H. Cavey, X. Palazzi , G. Clermont, and J.-P. Boutrand. Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim® in comparison to Alpha-BSM®—more bone ingrowth inside the implanted material with Ostim® compared to Alpha BSM®. BMC Musculoskeletal Disord. 10(164):1–11, 2009.Google Scholar
  35. 35.
    Huesa, C., M. H. Helfrich, and R. M. Aspden. Parallel-plate fluid flow systems for bone cell stimulation. J. Biomech. 43(6):1182–1189, 2010.CrossRefGoogle Scholar
  36. 36.
    Hulbert, S. F., et al. Potential of ceramic materials as permanently implantable skeletal prostheses. J. Biomed. Mater. Res. 4(3):433–456, 1970.CrossRefGoogle Scholar
  37. 37.
    Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491, 2005.CrossRefGoogle Scholar
  38. 38.
    Karsenty, G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab. 4(5):341–348, 2006.CrossRefGoogle Scholar
  39. 39.
    Karsenty, G., and E. F. Wagner. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2(4):389–406, 2002.CrossRefGoogle Scholar
  40. 40.
    Kong, H. J., et al. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl Acad. Sci. USA. 102(12):4300–4305, 2005.CrossRefGoogle Scholar
  41. 41.
    Kong, H. J., et al. Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nat. Mater. 4(6):460–464, 2005.CrossRefGoogle Scholar
  42. 42.
    Kreke, M. R., W. R. Huckle, and A. S. Goldstein. Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36(6):1047–1055, 2005.CrossRefGoogle Scholar
  43. 43.
    Kuboki, Y., et al. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J. Biomed. Mater. Res. 39(2):190–199, 1998.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Kuczumow, A., et al. Investigation of chemical changes in bone material from South African fossil hominid deposits. J. Archaeol. Sci. 37:107–115, 2010.Google Scholar
  45. 45.
    Kujala, S., et al. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials 24(25):4691–4697, 2003.CrossRefGoogle Scholar
  46. 46.
    Kwon, R. Y., and C. R. Jacobs. Time-dependent deformations in bone cells exposed to fluid flow in vitro: investigating the role of cellular deformation in fluid flow-induced signaling. J. Biomech. 40(14):3162–3168, 2007.CrossRefGoogle Scholar
  47. 47.
    Laird, D. J., U. H. von Andrian, and A. J. Wagers. Stem cell trafficking in tissue development, growth, and disease. Cell 132(4):612–630, 2008.CrossRefGoogle Scholar
  48. 48.
    Laurencin, C. T., et al. Tissue engineering: orthopedic applications. Annu. Rev. Biomed. Eng. 1:19–46, 1999.CrossRefGoogle Scholar
  49. 49.
    Lazarus, H. M., et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood Marrow. Transplant. 11(5):389–398, 2005.CrossRefGoogle Scholar
  50. 50.
    Li, Y., et al. Effects of structural property and surface modification of Ti6Ta4Sn scaffolds on the response of SaOS2 cells for bone tissue engineering. J. Alloy. Compd. 494(1–2):323–329, 2010.CrossRefGoogle Scholar
  51. 51.
    Liu, L., W. Yuan, and J. Wang, Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech. Model. Mechanobiol. 2010.Google Scholar
  52. 52.
    Long, F. Bone Appétit!. Cell 139:1044–1045, 2009.CrossRefGoogle Scholar
  53. 53.
    Lutwak, L., F. R. Singer, and M. R. Urist. UCLA conference: current concepts of bone metabolism. Ann. Intern. Med. 80(5):630–644, 1974.Google Scholar
  54. 54.
    Martin, R. B. Toward a unifying theory of bone remodeling. Bone 26(1):1–6, 2000.CrossRefGoogle Scholar
  55. 55.
    Martin, I., et al. Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J. Biomed. Mater. Res. 55(2):229–235, 2001.CrossRefGoogle Scholar
  56. 56.
    Massberg, S., et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131(5):994–1008, 2007.CrossRefGoogle Scholar
  57. 57.
    McGarry, J. G., et al. A comparison of strain and fluid shear stress in stimulating bone cell responses—a computational and experimental study. Faseb J. 19(3):482–484, 2005.Google Scholar
  58. 58.
    Meyerrose, T., et al. Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv. Drug Deliv. Rev. 62(12):1167–1174, 2010.CrossRefGoogle Scholar
  59. 59.
    Mourino, V., and A. R. Boccaccini. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J. R. Soc. Interface 7(43):209–227, 2010.CrossRefGoogle Scholar
  60. 60.
    Mullender, M. G., and R. Huiskes. Osteocytes and bone lining cells: which are the best candidates for mechano-sensors in cancellous bone? Bone 20(6):527–532, 1997.CrossRefGoogle Scholar
  61. 61.
    Mustafa, K., et al. Determining optimal surface roughness of TiO(2) blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin. Oral. Implants Res. 12(5):515–525, 2001.CrossRefGoogle Scholar
  62. 62.
    Nakamura, T., et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130(5):811–823, 2007.CrossRefGoogle Scholar
  63. 63.
    Navarro, M., et al. Biomaterials in orthopaedics. J. R. Soc. Interface 5(27):1137–1158, 2008.CrossRefGoogle Scholar
  64. 64.
    Oberdorster, G., E. Oberdorster, and J. Oberdorster. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7):823–839, 2005.CrossRefGoogle Scholar
  65. 65.
    Ozcivici, E., et al. Mechanical signals as anabolic agents in bone. Nat. Rev. Rheumatol. 6(1):50–59, 2010.CrossRefGoogle Scholar
  66. 66.
    Parekkadan, B., and J. M. Milwid. Mesenchymal stem cells as therapeutics. Annu. Rev. Biomed. Eng. 12:87–117, 2010.CrossRefGoogle Scholar
  67. 67.
    Partridge, K. A., and R. O. Oreffo. Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies. Tissue Eng. 10(1–2):295–307, 2004.CrossRefGoogle Scholar
  68. 68.
    Pek, Y. S., A. C. Wan, and J. Y. Ying. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials 31(3):385–391, 2010.CrossRefGoogle Scholar
  69. 69.
    Pietras, K., et al. PDGF receptors as cancer drug targets. Cancer Cell 3(5):439–443, 2003.CrossRefGoogle Scholar
  70. 70.
    Puckett, S., R. Pareta, and T. J. Webster. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int. J. Nanomed. 3(2):229–241, 2008.Google Scholar
  71. 71.
    Quarto, R., et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344(5):385–386, 2001.CrossRefGoogle Scholar
  72. 72.
    Ratner, B. D., and S. J. Bryant. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6:41–75, 2004.CrossRefGoogle Scholar
  73. 73.
    Ren, J., et al. Repair of mandibular defects using MSCs-seeded biodegradable polyester porous scaffolds. J. Biomater. Sci. Polym. Ed. 18(5):505–517, 2007.CrossRefGoogle Scholar
  74. 74.
    Rho, J. Y., L. Kuhn-Spearing, and P. Zioupos. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20(2):92–102, 1998.CrossRefGoogle Scholar
  75. 75.
    Rimondini, L., and S. Mele. Stem cell technologies for tissue regeneration in dentistry. Minerva Stomatol. 58(10):483–500, 2009.Google Scholar
  76. 76.
    Robling, A. G., A. B. Castillo, and C. H. Turner. Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 8:455–498, 2006.CrossRefGoogle Scholar
  77. 77.
    Rodan, G. A., and T. J. Martin. Therapeutic approaches to bone diseases. Science 289(5484):1508–1514, 2000.CrossRefGoogle Scholar
  78. 78.
    Ruardy, T. G., et al. Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surface Sci. Rep. 29(1):3–30, 1997.CrossRefGoogle Scholar
  79. 79.
    Rydziel, S., S. Shaikh, and E. Canalis. Platelet-derived growth factor-AA and -BB (PDGF-AA and -BB) enhance the synthesis of PDGF-AA in bone cell cultures. Endocrinology 134(6):2541–2546, 1994.CrossRefGoogle Scholar
  80. 80.
    Sá, J. C., et al. Influence of argon-ion bombardment of titanium surfaces on the cell behavior. Surf. Coat. Technol. 203:1765–1770, 2009.CrossRefGoogle Scholar
  81. 81.
    Satija, N. K., et al. Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev. 16(1):7–23, 2007.CrossRefGoogle Scholar
  82. 82.
    Satija, N. K., et al. Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J. Cell. Mol. Med. 13(11–12):4385–4402, 2009.CrossRefGoogle Scholar
  83. 83.
    Schimming, R., and R. Schmelzeisen. Tissue-engineered bone for maxillary sinus augmentation. J. Oral Maxillofac. Surg. 62(6):724–729, 2004.CrossRefGoogle Scholar
  84. 84.
    Schneider, R. K., et al. The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials 31:467–480, 2010.CrossRefGoogle Scholar
  85. 85.
    Schuler, M., et al. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Biomaterials 27(21):4003–4015, 2006.CrossRefGoogle Scholar
  86. 86.
    Shi, X., et al. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28(28):4078–4090, 2007.CrossRefGoogle Scholar
  87. 87.
    Silva, G. A., et al. Materials in particulate form for tissue engineering. 2. Applications in bone. J. Tissue Eng. Regen. Med. 1(2):97–109, 2007.CrossRefGoogle Scholar
  88. 88.
    Smith, I. O., X. H. Liu, L. A. Smith, and P. X. Ma. Nano-structured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(2):226–236, 2009.Google Scholar
  89. 89.
    Steinmuller-Nethl, D., et al. Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption. Biomaterials 27(26):4547–4556, 2006.CrossRefGoogle Scholar
  90. 90.
    Teitelbaum, S. L., and F. P. Ross. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4(8):638–649, 2003.CrossRefGoogle Scholar
  91. 91.
    Tsai, S. W., F. Y. Hsu, and P. L. Chen. Beads of collagen-nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells. Acta Biomater. 4(5):1332–1341, 2008.CrossRefGoogle Scholar
  92. 92.
    Undale, A. H., et al. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin. Proc. 84(10):893–902, 2009.CrossRefGoogle Scholar
  93. 93.
    Urist, M. R. Bone: formation by autoinduction. Science 150(698):893–899, 1965.CrossRefGoogle Scholar
  94. 94.
    Vagaska, B., et al. Osteogenic cells on bio-inspired materials for bone tissue engineering. Physiol. Res. 59(3):309–322, 2010.Google Scholar
  95. 95.
    Valonen, P. K., et al. In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(epsilon-caprolactone) scaffolds. Biomaterials 31(8):2193–2200, 2010.CrossRefGoogle Scholar
  96. 96.
    Vukicevic, S., and L. Grgurevic. BMP-6 and mesenchymal stem cell differentiation. Cytokine Growth Factor Rev. 20(5–6):441–448, 2009.CrossRefGoogle Scholar
  97. 97.
    Wang, Y., J. Y. Shyy, and S. Chien. Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu. Rev. Biomed. Eng. 10:1–38, 2008.MATHCrossRefGoogle Scholar
  98. 98.
    Wang, Y., et al. Visualizing the mechanical activation of Src. Nature 434(7036):1040–1045, 2005.CrossRefGoogle Scholar
  99. 99.
    Watari, F., et al. Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects. J. R. Soc. Interface 6(Suppl 3):S371–S388, 2009.CrossRefGoogle Scholar
  100. 100.
    Webster, T. J. Nanophase ceramics: the future orthopdic and dental implant material. Adv. Chem. Eng. 27:125–166, 2001.CrossRefGoogle Scholar
  101. 101.
    Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27(3):339–360, 1994.CrossRefGoogle Scholar
  102. 102.
    Wu, C., Y. Zhang, Y. Zhu, T. Friis, Y. Xiao. Structure-property relationships of silk-modified mesoporous bioglass scaffolds. Biomaterials 31:3429–3438, 2010.Google Scholar
  103. 103.
    Xu, H., S. F. Othman, and R. L. Magin. Monitoring tissue engineering using magnetic resonance imaging. J. Biosci. Bioeng. 106(6):515–527, 2008.CrossRefGoogle Scholar
  104. 104.
    Yamada, K. M., and E. Cukierman. Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610, 2007.CrossRefGoogle Scholar
  105. 105.
    Yao, C., D. Storey, and T. J. Webster. Nanostructured metal coatings on polymers increase osteoblast attachment. Int. J. Nanomed. 2(3):487–492, 2007.Google Scholar
  106. 106.
    Zhang, H., et al. Proteomics in bone research. Expert Rev Proteomics 7(1):103–111, 2010.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Xiaoling Liao
    • 1
    • 2
  • Shaoying Lu
    • 2
  • Yue Zhuo
    • 2
  • Christina Winter
    • 2
  • Wenfeng Xu
    • 1
  • Bo Li
    • 1
  • Yingxiao Wang
    • 2
    • 3
  1. 1.Biomaterials and Live Cell Imaging Institute, School of Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqingPeople’s Republic of China
  2. 2.Department of Bioengineering and the Beckman Institute for Advanced Science and TechnologyUniversity of IllinoisUrbana-ChampaignUSA
  3. 3.Center for Biophysics and Computational Biology, Department of Integrative and Molecular PhysiologyInstitute for Genomic Biology, University of IllinoisUrbanaUSA

Personalised recommendations