Role of Intercellular Junctions in Redistribution of Focal Adhesions and Orientation of Vascular Endothelial Cells Exposed to Cyclic Stretching

  • Wenjing Huang
  • Naoya Sakamoto
  • Kazuhiko Hanamura
  • Ryotaro Miyazawa
  • Masaaki Sato
Article

Abstract

The redistribution of focal adhesions (FAs) containing integrin β1 and paxillin plays an important role in the cyclic stretching-induced morphological changes of endothelial cells (ECs). In addition to focal adhesion kinase (FAK), known to be a primary regulator for FA redistribution, intercellular junctions (IJs) have recently been reported to be involved in signaling upstream of FAs. Here, we addressed the role of IJs in the morphological changes and redistribution of FAs in ECs exposed to cyclic stretching. Both confluent and sparse ECs were oriented nearly perpendicularly to the stretch direction after 10 min of exposure. Orientation of sparse ECs, but not confluent ECs, was suppressed by treatment with a phospho-FAK inhibitor. FAK inhibitor blocked integrin β1 redistribution in ECs, which was observed in non-inhibited cells after 10-min stretch exposure. However, paxillin redistribution in confluent ECs was observed regardless of FAK inhibitor treatment after 2-min stretch exposure. When we blocked signals from IJs with an inhibitor of Src homology 2 domain-containing tyrosine phosphatase-2, the percentage of oriented ECs decreased and paxillin redistribution, but not integrin β1, was suppressed. These findings suggest that IJs are involved in the orientation of ECs subjected to cyclic stretching through signaling pathways other than FAK.

Keywords

Cyclic stretching Endothelial cells Focal adhesions Intercellular junctions Cell orientation 

Supplementary material

12195_2011_194_MOESM1_ESM.doc (8 mb)
Supplementary material 1 (DOC 8181 kb)

References

  1. 1.
    Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001.CrossRefGoogle Scholar
  2. 2.
    Bershadsky, A. D., C. Ballestrem, L. Carramusa, Y. Zilberman, B. Gilquin, S. Khochbin, A. Y. Alexandrova, A. B. Verkhovsky, T. Shemesh, and M. M. Kozlov. Assembly and mechanosensory function of focal adhesions: experiments and models. Eur. J. Cell Biol. 85:165–173, 2006.CrossRefGoogle Scholar
  3. 3.
    Bikukov, K. G., J. R. Jacobson, A. A. Flores, S. Q. Ye, A. A. Birukova, A. D. Verin, and J. G. N. Garcia. Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am. J. Physiol. Lung Cell. Mol. Physiol. 285:L785–L797, 2003.Google Scholar
  4. 4.
    Chen, C. S., J. A. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307:355–361, 2003.CrossRefGoogle Scholar
  5. 5.
    Chen, L., S. S. Sung, M. L. Yip, H. R. Lawrence, Y. Ren, W. C. Guida, S. M. Sebti, N. J. Lawrence, and J. Wu. Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Mol. Pharmacol. 70:562–570, 2006.CrossRefGoogle Scholar
  6. 6.
    Chiu, Y. J., E. McBeath, and K. Fujiwara. Mechanotransduction in an extracted cell model: Fyn drives stretch- and flow-elicited PECAM-1 phosphorylation. J. Cell Biol. 182:753–763, 2008.CrossRefGoogle Scholar
  7. 7.
    Craig, S. W., and H. Chen. Lamellipodia protrusion: moving interactions of vinculin and Arp2/3. Curr. Biol. 13:R236–R238, 2003.CrossRefGoogle Scholar
  8. 8.
    Dasari, V. R., K. Kaur, K. K. Velpula, D. H. Dinh, A. J. Tsung, S. Mohanam, and J. S. Rao. Downregulation of focal adhesion kinase (FAK) by cord blood stem cells inhibits angiogenesis in glioblastoma. Aging (Albany NY) 2:791–803, 2010.Google Scholar
  9. 9.
    Fuchikawa, T., F. Nakamura, N. Fukuda, K. Takei, and Y. Goshima. Protein tyrosine phosphatase SHP2 is involved in Semaphorin 4D-induced axon repulsion. Biochem. Biophys. Res. Commun. 385:6–10, 2009.CrossRefGoogle Scholar
  10. 10.
    Fujiwara, K. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells. J. Intern. Med. 259:373–380, 2006.CrossRefGoogle Scholar
  11. 11.
    Goffin, J. M., P. Pittet, G. Csucs, J. W. Lussi, J. J. Meister, and B. Hinz. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172:259–268, 2006.CrossRefGoogle Scholar
  12. 12.
    Hsu, H. J., C. F. Lee, and R. A. Kaunas. Dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS One 4:e4853, 2009.CrossRefGoogle Scholar
  13. 13.
    Katanosaka, Y., J. H. Bao, T. Komatsu, T. Suemori, A. Yamada, S. Mohri, and K. Naruse. Analysis of cyclic-stretching responses using cell-adhesion-patterned cells. J. Biotechnol. 133:82–89, 2008.CrossRefGoogle Scholar
  14. 14.
    Kataoka, N., K. Ujita, K. Kimura, and M. Sato. The morphological responses of cultured bovine aortic endothelial cells to fluid-imposed shear stress under sparse and colony conditions. JSME Int. J. Ser. C 41:76–82, 1998.Google Scholar
  15. 15.
    Laukaitis, C. M., D. J. Webb, K. Donais, and A. F. Horwitz. Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153:1427–1440, 2001.CrossRefGoogle Scholar
  16. 16.
    Li, S., P. Butler, Y. Wang, Y. Hu, D. C. Han, S. Usami, J. L. Guan, and S. Chien. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc. Natl Acad. Sci. USA 99:3546–3551, 2002.CrossRefGoogle Scholar
  17. 17.
    Manes, S., E. Mira, C. Gomez-Mouton, Z. J. Zhao, R. A. Lacalle, and A. C. Martinez. Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Mol. Cell. Biol. 19:3125–3135, 1999.Google Scholar
  18. 18.
    Marin, T. M., C. F. M. Z. Clemente, A. M. Santos, P. K. Picardi, V. D. B. Pascoal, I. Lopes-Cendes, M. J. A. Saad, and K. G. Franchini. Shp-2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/src and mTOR pathways. Circ. Res. 103:813–824, 2008.CrossRefGoogle Scholar
  19. 19.
    Masuda, M., M. Osawa, H. Shigematsu, N. Harada, and K. Fujiwara. Platelet endothelial cell adhesion molecule-1 is a major SH-PTP2 binding protein in vascular endothelial cells. FEBS Lett. 408:331–336, 1997.CrossRefGoogle Scholar
  20. 20.
    Möhl, C., N. Kirchgeßner, C. Schäfer, K. Küpper, S. Born, G. Diez, W. H. Goldmann, R. Merkel, and B. Hoffmann. Becoming stable and strong: the interplay between vinculin exchange dynamics and adhesion strength during adhesion site maturation. Cell Motil. Cytoskeleton 66:350–364, 2009.CrossRefGoogle Scholar
  21. 21.
    Na, S., A. Trache, J. Trzeciakowski, Z. Sun, G. A. Meininger, and J. D. Humphrey. Time-dependent changes in smooth muscle cell stiffness and focal adhesion area in response to cyclic equibiaxial stretch. Ann. Biomed. Eng. 36:369–380, 2008.CrossRefGoogle Scholar
  22. 22.
    Naruse, K., T. Yamada, X. R. Sai, M. Hamaguchi, and M. Sokabe. pp125FAK is required for stretch dependent morphological response of endothelial cells. Oncogene 17:455–463, 1998.CrossRefGoogle Scholar
  23. 23.
    Nelson, C. M., D. M. Pirone, J. L. Tan, and C. S. Chen. Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol. Biol. Cell 15:2943–2953, 2004.CrossRefGoogle Scholar
  24. 24.
    Ngu, H., Y. Feng, L. Lu, S. J. Oswald, G. D. Longmore, and F. C. Yin. Effect of focal adhesion proteins on endothelial cell adhesion, motility and orientation response to cyclic strain. Ann. Biomed. Eng. 38:208–222, 2010.CrossRefGoogle Scholar
  25. 25.
    Petzold, T., A. W. Orr, C. Hahn, K. A. Jhaveri, J. T. Parsons, and M. A. Schwartz. Focal adhesion kinase modulates activation of NF-kappaB by flow in endothelial cells. Am. J. Physiol. Cell Physiol. 297:C814–C822, 2009.CrossRefGoogle Scholar
  26. 26.
    Rabodzey, A., P. Alcaide, F. W. Luscinskas, and B. Ladoux. Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys. J. 95:1428–1438, 2008.CrossRefGoogle Scholar
  27. 27.
    Sakamoto, N., T. Ohashi, and M. Sato. Effect of magnetic field on nitric oxide synthesis of cultured endothelial cells. Int. J. Appl. Electrom. 14:317–322, 2001.Google Scholar
  28. 28.
    Shikata, Y., A. Rios, K. Kawkitinarong, N. DePaola, J. G. Garcia, and K. G. Birukov. Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp. Cell Res. 304:40–49, 2005.CrossRefGoogle Scholar
  29. 29.
    Suzuki, M., K. Naruse, Y. Asano, T. Okamoto, N. Nishikimi, T. Sakurai, Y. Nimura, and M. Sokabe. Up-regulation of integrin beta 3 expression by cyclic stretch in human umbilical endothelial cells. Biochem. Biophys. Res. Commun. 239:372–376, 1997.CrossRefGoogle Scholar
  30. 30.
    Tanaka, T., R. Yamaguchi, H. Sabe, K. Sekiguchi, and J. M. Healy. Paxillin association in vitro with integrin cytoplasmic domain peptides. FEBS Lett. 399:53–58, 1996.CrossRefGoogle Scholar
  31. 31.
    Tymchenko, N., J. Wallentin, S. Petronis, L. M. Bjursten, B. Kasemo, and J. Gold. A novel cell force sensor for quantification of traction during cell spreading and contact guidance. Biophys. J. 93:335–345, 2007.CrossRefGoogle Scholar
  32. 32.
    Tzima, E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431, 2005.CrossRefGoogle Scholar
  33. 33.
    Ueki, Y., N. Sakamoto, T. Ohashi, and M. Sato. Morphological responses of vascular endothelial cells induced by local stretch transmitted through intercellular junctions. Exp. Mech. 49:125–134, 2009.CrossRefGoogle Scholar
  34. 34.
    Ukropec, J. A., M. K. Hollinger, S. M. Salva, and M. J. Woolkalis. SHP-2 association with VE–cadherin complexes in human endothelial cells is regulated by thrombin. J. Biol. Chem. 275(8):5983–5986, 2000.CrossRefGoogle Scholar
  35. 35.
    von Wichert, G., B. Haimovich, G. S. Feng, and M. P. Sheetz. Force-dependent integrin-cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2. EMBO J. 22:5023–5035, 2003.CrossRefGoogle Scholar
  36. 36.
    Wang, H. B., M. Dembo, S. K. Hanks, and Y. Wang. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl Acad. Sci. USA 98:11295–11300, 2001.CrossRefGoogle Scholar
  37. 37.
    Wang, J. H.-C., G. Yang, Z. Li, and W. Shen. Fibroblast responses to cyclic mechanical stretching depend on cell orientation to the stretching direction. J. Biomech. 37:573–576, 2004.CrossRefGoogle Scholar
  38. 38.
    Wen, H., P. A. Blume, and B. E. Sumpio. Role of integrins and focal adhesion kinase in the orientation of dermal fibroblasts exposed to cyclic strain. Int. Wound J. 6:149–158, 2009.CrossRefGoogle Scholar
  39. 39.
    Yano, Y., J. Geibel, and B. E. Sumpio. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am. J. Physiol. 271:C635–C649, 1996.Google Scholar
  40. 40.
    Yano, Y., J. Geibel, and B. E. Sumpio. Cyclic strain induces reorganization of integrin alpha 5 beta 1 and alpha 2 beta 1 in human umbilical vein endothelial cells. J. Cell. Biochem. 64:505–513, 1997.CrossRefGoogle Scholar
  41. 41.
    Yonemura, S., Y. Wada, T. Watanabe, A. Nagafuchi, and M. Shibata. α-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12:533–542, 2010.CrossRefGoogle Scholar
  42. 42.
    Zhao, Z. S., E. Manser, T. H. Loo, and L. Lim. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell. Biol. 20:6354–6363, 2000.CrossRefGoogle Scholar
  43. 43.
    Zhu, J. X., G. Cao, J. T. Williams, and H. M. Delisser. SHP-2 phosphatase activity is required for PECAM-1-dependent cell motility. Am. J. Physiol. Cell Physiol. 299:C854–C865, 2010.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Wenjing Huang
    • 1
  • Naoya Sakamoto
    • 2
  • Kazuhiko Hanamura
    • 2
    • 3
  • Ryotaro Miyazawa
    • 4
  • Masaaki Sato
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
  2. 2.Department of Bioengineering and RoboticsGraduate School of Engineering, Tohoku UniversitySendaiJapan
  3. 3.Meiji Seika, Ltd.TokyoJapan
  4. 4.Department of Mechanical and Aerospace EngineeringSchool of Engineering, Tohoku UniversitySendaiJapan

Personalised recommendations