Effect of Actomyosin Contractility on Lamellipodial Protrusion Dynamics on a Micropatterned Substrate

  • Kennedy Omondi Okeyo
  • Masuzo Nagasaki
  • Junko Sunaga
  • Masaki Hojo
  • Hidetoshi Kotera
  • Taiji Adachi
Article

Abstract

Actin polymerization-driven protrusion of the lamellipodia is a requisite initial step during actin-based cell migration, and is closely associated with attachment to the substrate. Although tremendous progress has been made in recent years toward elucidating the molecular details of focal adhesions, our understanding of the basic coordination of protrusion and adhesion, and how the two fundamental processes relate to actomyosin contractility is still inadequate. Therefore, to highlight the effect of cell–substrate interactions on the protrusive dynamics of the lamellipodia and to correlate protrusion with actomyosin activities, this study investigated the migration of fish epidermal keratocytes on fibronectin micropatterns intercalated with adhesion-suppressed gaps of varying widths. We show that insufficient adhesion associated with the gaps could limit lamellipodial protrusion such that the percentage of migrating cells decreases with an increase in gap width, and protrusion across the gaps is accompanied by ruffling. Moreover, our results suggest that up-regulating actomyosin contractility enhances the mechanical integrity of the actin cytoskeleton, leading to an increase in the width of the lamellipodia, and consequently, an increase in the percentage of cells migrating across the gaps. Thus, we demonstrate that the protrusion dynamics at the leading edge of migrating cells are functionally involved in the global mechanical regulation of actin cytoskeletal components that enable cell migration.

Keywords

Cell migration Micropatterning Cell adhesion Cell protrusion Actomyosin contractility Cell biomechanics 

References

  1. 1.
    Adachi, T., K. O. Okeyo, Y. Shitagawa, and M. Hojo. Strain field in actin filament network in lamellipodia of migrating cells: implication for network reorganization. J. Biomech. 42:297–302, 2009.CrossRefGoogle Scholar
  2. 2.
    Amano, M., K. Chihara, K. Kimura, Y. Fukata, N. Nakamura, Y. Matsuura, and K. Kaibuchi. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275:1308–1311, 1997.CrossRefGoogle Scholar
  3. 3.
    Bailly, M., J. S. Condeelis, and J. E. Segall. Chemoattractant-induced lamellipod extension. Microsc. Res. Tech. 43:433–443, 1998.CrossRefGoogle Scholar
  4. 4.
    Ballestrem, C., B. Hinz, B. A. Imhof, and B. Wehrle-Haller. Marching at the front and dragging behind: differential αVβ3-integrin turnover regulates focal adhesion behavior. J. Cell Biol. 155:1319–1332, 2001.CrossRefGoogle Scholar
  5. 5.
    Bischofs, I. B., F. Klein, D. Lehnert, M. Bastmeyer, and U. S. Schwarz. Filamentous network mechanics and active contractility determine cell and tissue shape. Biophys. J. 95:3488–3496, 2008.CrossRefGoogle Scholar
  6. 6.
    Borm, B., R. P. Requardt, V. Herzog, and G. Kirfel. Membrane ruffles in cell migration: indicators of inefficient lamellipodia adhesion and compartments of actin filament reorganization. Exp. Cell Res. 302:83–95, 2005.CrossRefGoogle Scholar
  7. 7.
    Buckley, C. D., G. Ed Rainger, P. F. Bradfield, G. B. Nash, and D. L. Simmons. Cell adhesion: more than just glue (review). Mol. Membr. Biol. 15:167–176, 1998.CrossRefGoogle Scholar
  8. 8.
    Burridge, K., M. Chrzanowska-Wodnicka, and C. Zhong. Focal adhesion assembly. Trends Cell Biol. 7:342–347, 1997.CrossRefGoogle Scholar
  9. 9.
    Burridge, K., K. Fath, T. Kelly, G. Nuckolls, and C. Turner. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4:487–525, 1998.CrossRefGoogle Scholar
  10. 10.
    Chen, W. T. Mechanism of retraction of the trailing edge during fibroblast movement. J. Cell Biol. 90:187–200, 1981.CrossRefGoogle Scholar
  11. 11.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276:1425–1428, 1997.CrossRefGoogle Scholar
  12. 12.
    Cox, E. A., and A. Huttenlocher. Regulation of integrin-mediated adhesion during cell migration. Microsc. Res. Tech. 43:412–419, 1998.CrossRefGoogle Scholar
  13. 13.
    Craig, S. W., and H. Chen. Lamellipodia protrusion: moving interactions of vinculin and Arp2/3. Curr. Biol. 13:R236–R238, 2003.CrossRefGoogle Scholar
  14. 14.
    Cramer, L. P. Organization and polarity of actin filament networks in cells: implications for the mechanism of myosin-based cell motility. Biochem. Soc. Symp. 65:173–205, 1999.Google Scholar
  15. 15.
    Csucs, G., K. Quirin, and G. Danuser. Locomotion of fish epidermal keratocytes on spatially selective adhesion patterns. Cell Motil. Cytoskeleton 64:856–867, 2007.CrossRefGoogle Scholar
  16. 16.
    DeMali, K. A., and K. Burridge. Coupling membrane protrusion and cell adhesion. J. Cell Sci. 116:2389–2397, 2003.CrossRefGoogle Scholar
  17. 17.
    DeMali, K. A., K. Wennerberg, and K. Burridge. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 15:572–582, 2003.CrossRefGoogle Scholar
  18. 18.
    Fu, J., Y. K. Wang, M. T. Yang, R. A. Desai, X. Yu, Z. Liu, and C. S. Chen. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7:733–736, 2010.CrossRefGoogle Scholar
  19. 19.
    Gallant, N. D., K. E. Michael, and A. J. Garcia. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 16:4329–4340, 2005.CrossRefGoogle Scholar
  20. 20.
    Geiger, B., J. P. Spatz, and A. D. Bershadsky. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10:21–33, 2009.CrossRefGoogle Scholar
  21. 21.
    Giannone, G., B. J. Dubin-Thaler, H. G. Dobereiner, N. Kieffer, A. R. Bresnick, and M. P. Sheetz. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116:431–443, 2004.CrossRefGoogle Scholar
  22. 22.
    Giannone, G., B. J. Dubin-Thaler, O. Rossier, Y. F. Cai, O. Chaga, G. Y. Jiang, W. Beaver, H. G. Dobereiner, Y. Freund, G. Borisy, and M. P. Sheetz. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128:561–575, 2007.CrossRefGoogle Scholar
  23. 23.
    Goffin, J. M., P. Pittet, G. Csucs, J. W. Lussi, J. J. Meister, and B. Hinz. Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J. Cell Biol. 172:259–268, 2006.CrossRefGoogle Scholar
  24. 24.
    Gupton, S. L., and C. M. Waterman-Storer. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125:1361–1374, 2006.CrossRefGoogle Scholar
  25. 25.
    Hirata, H., H. Tatsumi, and M. Sokabe. Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J. Cell Sci. 121:2795–2804, 2008.CrossRefGoogle Scholar
  26. 26.
    Ishihara, H., B. L. Martin, D. L. Brautigan, H. Karaki, H. Ozaki, Y. Kato, N. Fusetani, S. Watabe, K. Hashimoto, D. Uemura, and D. J. Hartshorne. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem. Biophys. Res. Commun. 159:871–877, 1989.CrossRefGoogle Scholar
  27. 27.
    Lauffenburger, D. A., and A. Wells. Getting a grip: new insights for cell adhesion and traction. Nat. Cell Biol. 3:E110–E112, 2001.CrossRefGoogle Scholar
  28. 28.
    Lee, J., and K. Jacobson. The composition and dynamics of cell-substratum adhesions in locomoting fish keratocytes. J. Cell Sci. 110:2833–2844, 1997.Google Scholar
  29. 29.
    Lee, J., M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson. Traction forces generated by locomoting keratocytes. J. Cell Biol. 127:1957–1964, 1994.CrossRefGoogle Scholar
  30. 30.
    Libotte, T., H. W. Kaiser, W. Alt, and T. Bretschneider. Polarity, protrusion–retraction dynamics and their interplay during keratinocyte cell migration. Exp. Cell Res. 270:129–137, 2001.CrossRefGoogle Scholar
  31. 31.
    Liu, W. F., and C. S. Chen. Engineering biomaterials to control cell function. Mater. Today 8:28–35, 2005.CrossRefGoogle Scholar
  32. 32.
    Liu, W. F., and C. S. Chen. Cellular and multicellular form and function. Adv. Drug Deliv. Rev. 59:1319–1328, 2007.CrossRefGoogle Scholar
  33. 33.
    Liu, Z., J. L. Tan, D. M. Cohen, M. T. Yang, N. J. Sniadecki, S. A. Ruiz, C. M. Nelson, and C. S. Chen. Mechanical tugging force regulates the size of cell–cell junctions. Proc. Natl Acad. Sci. USA 107:9944–9949, 2010.CrossRefGoogle Scholar
  34. 34.
    Martinez, E., A. Lagunas, C. A. Mills, S. Rodriguez-Segui, M. Estevez, S. Oberhansl, J. Comelles, and J. Samitier. Stem cell differentiation by functionalized micro- and nanostructured surfaces. Nanomedicine 4:65–82, 2009.CrossRefGoogle Scholar
  35. 35.
    Medeiros, N. A., D. T. Burnette, and P. Forscher. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat. Cell Biol. 8:215–226, 2006.CrossRefGoogle Scholar
  36. 36.
    Okeyo, K. O., T. Adachi, and M. Hojo. Mechanical regulation of actin network dynamics in migrating cells. J. Biomech. Sci. Eng. 5:186–207, 2010.CrossRefGoogle Scholar
  37. 37.
    Okeyo, K. O., T. Adachi, J. Sunaga, and M. Hojo. Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells. J. Biomech. 42:2540–2548, 2009.CrossRefGoogle Scholar
  38. 38.
    Raghavan, S., and C. S. Chen. Micropatterned environments in cell biology. Adv. Mater. 16:1303–1313, 2004.CrossRefGoogle Scholar
  39. 39.
    Riveline, D., E. Zamir, N. Q. Balaban, U. S. Schwarz, T. Ishizaki, S. Narumiya, Z. Kam, B. Geiger, and A. D. Bershadsky. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153:1175–1185, 2001.CrossRefGoogle Scholar
  40. 40.
    Ruiz, A., L. Buzanska, D. Gilliland, H. Rauscher, L. Sirghi, T. Sobanski, M. Zychowicz, L. Ceriotti, F. Bretagnol, S. Coecke, P. Colpo, and F. Rossi. Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials 29:4766–4774, 2008.CrossRefGoogle Scholar
  41. 41.
    Stephanou, A., E. Mylona, M. Chaplain, and P. Tracqui. A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions. J. Theor. Biol. 253:701–716, 2008.CrossRefGoogle Scholar
  42. 42.
    Svitkina, T. M., A. B. Verkhovsky, K. M. McQuade, and G. G. Borisy. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. Cell Biol. 139:397–415, 1997.CrossRefGoogle Scholar
  43. 43.
    Verkhovsky, A. B., T. M. Svitkina, and G. G. Borisy. Network contraction model for cell translocation and retrograde flow. Biochem. Soc. Symp. 65:207–222, 1999.Google Scholar
  44. 44.
    Vicente-Manzanares, M., C. K. Choi, and A. R. Horwitz. Integrins in cell migration: the actin connection. J. Cell Sci. 122:199–206, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Kennedy Omondi Okeyo
    • 1
  • Masuzo Nagasaki
    • 1
  • Junko Sunaga
    • 2
    • 3
  • Masaki Hojo
    • 1
  • Hidetoshi Kotera
    • 4
  • Taiji Adachi
    • 2
    • 3
    • 4
  1. 1.Department of Mechanical Engineering and ScienceKyoto UniversityKyotoJapan
  2. 2.Department of Biomechanics, Research Center for Nano Medical EngineeringInstitute for Frontier Medical Sciences, Kyoto UniversityKyotoJapan
  3. 3.Computational Cell Biomechanics TeamVCAD System Research Program, RIKENWakoJapan
  4. 4.Department of Micro EngineeringKyoto UniversityKyotoJapan

Personalised recommendations