Cellular and Molecular Bioengineering

, Volume 4, Issue 3, pp 327–339 | Cite as

Advances in Experiments and Modeling in Micro- and Nano-Biomechanics: A Mini Review

Article

Abstract

Recent advances in micro- and nano-technologies and high-end computing have enabled the development of new experimental and modeling approaches to study biomechanics at the micro- and nano-scales that were previously not possible. These new cutting-edge approaches are contributing toward our understanding in emerging areas such as mechanobiology and mechanochemistry. Another important potential contribution lies in translational medicine, since biomechanical studies at the cellular and molecular levels have direct relevance in areas such disease diagnosis, nano-medicine and drug delivery. Thus, the developed experimental and modeling approaches are critical in elucidating important mechanistic insights in both basic sciences and clinical treatment. While it is hard to cover all the recent advances in this mini-review, we focus on several important approaches. For experimental techniques, we review the assays involving shear flow, cellular imaging, microbead, microcontact printing, and micropillars at the micro-scale, and micropipette aspiration, optical tweezers, parallel flow chamber, and atomic force microscopy at the nano-scale. In modeling and simulations, we outline the theoretical modeling for actin dynamics in migrating cell and actin-based cell motility in cellular mechanics, as well as the receptor–ligand binding in cell adhesion and the application of free, steered, and flow molecular dynamics simulations in molecular biomechanics. Relevant scientific issues and applications are also discussed.

Keywords

Cellular mechanics Molecular biomechanics Experimental techniques Theoretical modeling Computations 

Notes

Acknowledgment

The authors are grateful for technical assistances from Dr. Yan Zhang.

References

  1. 1.
    Adcock, S. A., and J. A. McCammon. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev. 106:1589–1615, 2006.CrossRefGoogle Scholar
  2. 2.
    Ashkin, A., J. M. Dziedzic, and T. Yamane. Optical trapping and manipulation of single cells using infrared-laser beams. Nature 330:769–771, 1987.CrossRefGoogle Scholar
  3. 3.
    Atilgan, E., D. Wirtz, and S. X. Sun. Mechanics and dynamics of actin-driven thin membrane protrusions. Biophys. J. 90:65–76, 2006.CrossRefGoogle Scholar
  4. 4.
    Bell, G. I. Models for specific adhesion of cells to cells. Science 200:618–627, 1978.CrossRefGoogle Scholar
  5. 5.
    Bell, G. I., M. Dembo, and P. Bongrand. Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys. J. 45:1051–1064, 1984.CrossRefGoogle Scholar
  6. 6.
    Bhatia, S. K., M. R. King, and D. A. Hammer. The state diagram for cell adhesion mediated by two receptors. Biophys. J. 84:2671–2690, 2003.CrossRefGoogle Scholar
  7. 7.
    Binnig, G., C. F. Quate, and C. Gerber. Atomic force microscope. Phys. Rev. Lett. 56:930–933, 1986.CrossRefGoogle Scholar
  8. 8.
    Borisy, G. G., and T. M. Svitkina. Actin machinery: pushing the envelope. Curr. Opin. Cell Biol. 12:104–112, 2000.CrossRefGoogle Scholar
  9. 9.
    Caputo, K. E., and D. A. Hammer. Adhesive dynamics simulation of G-protein-mediated chemokine-activated neutrophil adhesion. Biophys. J. 96:2989–3004, 2009.CrossRefGoogle Scholar
  10. 10.
    Chang, K. C., D. F. J. Tees, and D. A. Hammer. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc. Natl Acad. Sci. USA 97:11262–11267, 2000.CrossRefGoogle Scholar
  11. 11.
    Chen, W., E. A. Evans, R. P. McEver, and C. Zhu. Monitoring receptor–ligand interactions between surfaces by thermal fluctuations. Biophys. J. 94:694–701, 2008.CrossRefGoogle Scholar
  12. 12.
    Chen, W., J. Z. Lou, and C. Zhu. Molecular dynamics simulated unfolding of von Willebrand factor A domains by force. Cell. Mol. Bioeng. 2:75–86, 2009.CrossRefGoogle Scholar
  13. 13.
    Chen, W., J. Z. Lou, and C. Zhu. Simulated thermal unfolding of the von Willebrand factor A domains. Cell. Mol. Bioeng. 3:117–127, 2010.CrossRefGoogle Scholar
  14. 14.
    Chen, Z., J. Z. Lou, C. Zhu, and K. Schulten. Flow-induced structural transition in the beta-switch region of glycoprotein Ib. Biophys. J. 95:1303–1313, 2008.CrossRefGoogle Scholar
  15. 15.
    Chesla, S. E., P. Selvaraj, and C. Zhu. Measuring two-dimensional receptor–ligand binding kinetics by micropipette. Biophys. J. 75:1553–1572, 1998.CrossRefGoogle Scholar
  16. 16.
    Chiu, J. J., C. N. Chen, P. L. Lee, C. T. Yang, H. S. Chuang, et al. Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J. Biomech. 36:1883–1895, 2003.CrossRefGoogle Scholar
  17. 17.
    Davies, P. F., A. Remuzzi, E. J. Gordon, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl Acad. Sci. USA 83:2114–2117, 1986.CrossRefGoogle Scholar
  18. 18.
    del Rio, A., R. Perez-Jimenez, R. C. Liu, P. Roca-Cusachs, J. M. Fernandez, et al. Stretching single talin rod molecules activates vinculin binding. Science 323:638–641, 2009.CrossRefGoogle Scholar
  19. 19.
    Dembo, M., D. C. Torney, K. Saxman, and D. Hammer. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B Biol. Sci. 234:55–83, 1988.CrossRefGoogle Scholar
  20. 20.
    Deng, L. H., N. J. Fairbank, B. Fabry, P. G. Smith, and G. N. Maksym. Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 287:C440–C448, 2004.CrossRefGoogle Scholar
  21. 21.
    DePaola, N., P. F. Davies, W. F. Pritchard, L. Florez, N. Harbeck, et al. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl Acad. Sci. USA 96:3154–3159, 1999.CrossRefGoogle Scholar
  22. 22.
    Dewey, C. F., S. R. Bussolari, M. A. Gimbrone, and P. F. Davies. The Dynamic response of vascular endothelial-cells to fluid shear-stress. J. Biomech. Eng. 103:177–185, 1981.CrossRefGoogle Scholar
  23. 23.
    Doyle, A. D., F. W. Wang, K. Matsumoto, and K. M. Yamada. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184:481–490, 2009.CrossRefGoogle Scholar
  24. 24.
    du Roure, O., A. Saez, A. Buguin, R. H. Austin, P. Chavrier, et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102:2390–2395, 2005.CrossRefGoogle Scholar
  25. 25.
    Evans, E., K. Ritchie, and R. Merkel. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68:2580–2587, 1995.CrossRefGoogle Scholar
  26. 26.
    Forman, J. R., and J. Clarke. Mechanical unfolding of proteins: insights into biology, structure and folding. Curr. Opin. Struct. Biol. 17:58–66, 2007.CrossRefGoogle Scholar
  27. 27.
    Frangos, J. A., L. V. McIntire, and S. G. Eskin. Shear stress induced stimulation of mammalian cell metabolism. Biotechnol. Bioeng. 32:1053–1060, 1988.CrossRefGoogle Scholar
  28. 28.
    Frye, S. R., A. Yee, S. G. Eskin, R. Guerra, X. Y. Cong, et al. CDNA microarray analysis of endothelial cells subjected to cyclic mechanical strain: importance of motion control. Physiol. Genomics 21:124–130, 2005.CrossRefGoogle Scholar
  29. 29.
    Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40:317–330, 1998.CrossRefGoogle Scholar
  30. 30.
    Galbraith, C. G., K. M. Yamada, and M. P. Sheetz. The relationship between force and focal complex development. J. Cell Biol. 159:695–705, 2002.CrossRefGoogle Scholar
  31. 31.
    Grimm, H. P., A. B. Verkhovsky, A. Mogilner, and J. J. Meister. Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia. Eur. Biophys. J. 32:563–577, 2003.CrossRefGoogle Scholar
  32. 32.
    Gunnerson, K. N., Y. V. Pereverzev, and O. V. Prezhdo. Atomistic simulation combined with analytic theory to study the response of the P-selectin/PSGL-1 complex to an external force. J. Phys. Chem. B 113:2090–2100, 2009.CrossRefGoogle Scholar
  33. 33.
    Hammer, D. A., and S. M. Apte. Simulation of cell rolling and adhesion on surfaces in shear-flow. General results and analysis of selectin-mediated neutrophil adhesion. Biophys. J. 63:35–57, 1992.CrossRefGoogle Scholar
  34. 34.
    Hayakawa, K., H. Tatsumi, and M. Sokabe. Actin stress fibers transmit and focus force to activate mechanosensitive channels. J. Cell Sci. 121:496–503, 2008.CrossRefGoogle Scholar
  35. 35.
    Huang, J., J. Chen, S. E. Chesla, T. Yago, P. Mehta, et al. Quantifying the effects of molecular orientation and length on two-dimensional receptor–ligand binding kinetics. J. Biol. Chem. 279:44915–44923, 2004.CrossRefGoogle Scholar
  36. 36.
    Huang, J., V. I. Zarnitsyna, B. Y. Liu, L. J. Edwards, N. Jiang, et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464:932–936, 2010.CrossRefGoogle Scholar
  37. 37.
    Huisman, E. M., T. van Dillen, P. R. Onck, and E. Van der Giessen. Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior. Phys. Rev. Lett. 99:208103, 2007.CrossRefGoogle Scholar
  38. 38.
    Icard-Arcizet, D., O. Cardoso, A. Richert, and S. Henon. Cell stiffening in response to external stress is correlated to actin recruitment. Biophys. J. 94:2906–2913, 2008.CrossRefGoogle Scholar
  39. 39.
    Inoue, Y., and T. Adachi. Coarse-grained Brownian ratchet model of membrane protrusion on cellular scale. Biomech. Model. Mechanobiol., 2010. doi:10.1007/s10237-010-0250-6.
  40. 40.
    Interlandi, G., and W. Thomas. The catch bond mechanism between von Willebrand Factor and platelet surface receptors investigated by molecular dynamics simulations. Proteins 78:2506–2522, 2010.Google Scholar
  41. 41.
    Kaplanski, G., C. Farnarier, O. Tissot, A. Pierres, A. M. Benoliel, et al. Granulocyte endothelium initial adhesion—analysis of transient binding events mediated by E-selectin in a laminar shear-flow. Biophys. J. 64:1922–1933, 1993.CrossRefGoogle Scholar
  42. 42.
    Kataoka, N., S. Ujita, and M. Sato. Effect of flow direction on the morphological responses of cultured bovine aortic endothelial cells. Med. Biol. Eng. Comput. 36:122–128, 1998.CrossRefGoogle Scholar
  43. 43.
    Keren, K., Z. Pincus, G. M. Allen, E. L. Barnhart, G. Marriott, et al. Mechanism of shape determination in motile cells. Nature 453:475–480, 2008.CrossRefGoogle Scholar
  44. 44.
    Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107:4872–4877, 2010.CrossRefGoogle Scholar
  45. 45.
    Kim, T., W. Hwang, H. Lee, and R. D. Kamm. Computational analysis of viscoelastic properties of crosslinked actin networks. PLoS Comput. Biol. 5:e1000439, 2009.CrossRefGoogle Scholar
  46. 46.
    Klepeis, J. L., et al. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. Struct. Biol. 19(2):120–127, 2009.CrossRefGoogle Scholar
  47. 47.
    Krasik, E. F., K. E. Caputo, and D. A. Hammer. Adhesive dynamics simulation of neutrophil arrest with stochastic activation. Biophys. J. 95:1716–1728, 2008.CrossRefGoogle Scholar
  48. 48.
    Krasik, E. F., K. L. Yee, and D. A. Hammer. Adhesive dynamics simulation of neutrophil arrest with deterministic activation. Biophys. J. 91:1145–1155, 2006.CrossRefGoogle Scholar
  49. 49.
    Lacayo, C. I., Z. Pincus, M. M. VanDuijn, C. A. Wilson, D. A. Fletcher, et al. Emergence of large-scale cell morphology and movement from local actin filament growth dynamics. PLoS Biol. 5:2035–2052, 2007.CrossRefGoogle Scholar
  50. 50.
    LaMack, J. A., and M. H. Friedman. Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am. J. Physiol. Heart Circ. Physiol. 293:H2853–H2859, 2007.CrossRefGoogle Scholar
  51. 51.
    Lauffenburger, D. A., and A. F. Horwitz. Cell migration: a physically integrated molecular process. Cell 84:359–369, 1996.CrossRefGoogle Scholar
  52. 52.
    Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107:341–347, 1985.CrossRefGoogle Scholar
  53. 53.
    Levesque, M. J., R. M. Nerem, and E. A. Sprague. Vascular endothelial-cell proliferation in culture and the influence of flow. Biomaterials 11:702–707, 1990.CrossRefGoogle Scholar
  54. 54.
    Li, S., J. L. Guan, and S. Chien. Biochemistry and biomechanics of cell motility. Annu. Rev. Biomed. Eng. 7:105–150, 2005.CrossRefGoogle Scholar
  55. 55.
    Liu, L., Y. Fang, Q. Huang, and J. Wu. A rigidity-enhanced antimicrobial activity: a case for linear cationic alpha-helical peptide HP(2–20) and its four analogues. PLoS One 6(1):e16441, 2011.CrossRefGoogle Scholar
  56. 56.
    Liu, Z., J. L. Tan, D. M. Cohen, M. T. Yang, N. J. Sniadecki, et al. Mechanical tugging force regulates the size of cell–cell junctions. Proc. Natl Acad. Sci. USA 107:9944–9949, 2010.CrossRefGoogle Scholar
  57. 57.
    Long, M., H. L. Goldsmith, D. F. J. Tees, and C. Zhu. Probabilistic modeling of shear-induced formation and breakage of doublets cross-linked by receptor–ligand bonds. Biophys. J. 76:1112–1128, 1999.CrossRefGoogle Scholar
  58. 58.
    Lou, J. Z., and C. Zhu. A structure-based sliding–rebinding mechanism for catch bonds. Biophys. J. 92:1471–1485, 2007.CrossRefGoogle Scholar
  59. 59.
    Lou, J. Z., and C. Zhu. Flow induces loop-to-beta-hairpin transition on the beta-switch of platelet glycoprotein Ib alpha. Proc. Natl Acad. Sci. USA 105:13847–13852, 2008.CrossRefGoogle Scholar
  60. 60.
    Lü, S. Q., and M. Long. Forced extension of P-selectin construct using steered molecular dynamics. Chin. Sci. Bull. 49:10–17, 2004.Google Scholar
  61. 61.
    Lü, S. Q., Y. Zhang, and M. Long. Visualization of allostery in P-selectin lectin domain using MD simulations. PLoS One 5(12):e15417, 2010.CrossRefGoogle Scholar
  62. 62.
    Maree, A. F. M., A. Jilkine, A. Dawes, V. A. Grieneisen, and L. Edelstein-Keshet. Polarization and movement of keratocytes: a multiscale modelling approach. Bull. Math. Biol. 68:1169–1211, 2006.CrossRefGoogle Scholar
  63. 63.
    Matthews, B. D., D. R. Overby, R. Mannix, and D. E. Ingber. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119:508–518, 2006.CrossRefGoogle Scholar
  64. 64.
    McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.CrossRefGoogle Scholar
  65. 65.
    Metaxa, E., H. Meng, S. R. Kaluvala, M. P. Szymanski, R. A. Paluch, et al. Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow. Am. J. Physiol. Heart Circ. Physiol. 295:H736–H742, 2008.CrossRefGoogle Scholar
  66. 66.
    Mogilner, A., and L. Edelstein-Keshet. Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J. 83:1237–1258, 2002.CrossRefGoogle Scholar
  67. 67.
    Mogilner, A., and G. Oster. Cell motility driven by actin polymerization. Biophys. J. 71:3030–3045, 1996.CrossRefGoogle Scholar
  68. 68.
    Mogilner, A., and G. Oster. Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J. 84:1591–1605, 2003.CrossRefGoogle Scholar
  69. 69.
    Mogilner, A., and B. Rubinstein. The physics of filopodial protrusion. Biophys. J. 89:782–795, 2005.CrossRefGoogle Scholar
  70. 70.
    Morigi, M., C. Zoja, M. Figliuzzi, M. Foppolo, G. Micheletti, et al. Fluid shear-stress modulates surface expression of adhesion molecules by endothelial-cells. Blood 85:1696–1703, 1995.Google Scholar
  71. 71.
    Nagel, T., N. Resnick, C. F. Dewey, and M. A. Gimbrone. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Thromb. Vasc. Biol. 19:1825–1834, 1999.CrossRefGoogle Scholar
  72. 72.
    Nakaya, M., M. Kitano, M. Masuda, and S. Nagata. Spationtemporal activation of Rac1 for engulfment of apoptotic cells. Proc. Natl Acad. Sci. USA 195:9198–9203, 2008.CrossRefGoogle Scholar
  73. 73.
    Nishio, K., Y. Ueki, N. Sakamoto, and M. Sato. Effect of initial orientation of vascular endothelial cells on activation of RhoGTPases induced by fluid shear stress. Cell. Mol. Bioeng. 2:160–168, 2011.CrossRefGoogle Scholar
  74. 74.
    Nomura, H., C. Ishikawa, T. Komatsuda, J. Ando, and A. Kamiya. A disk-type apparatus for applying fluid shear-stress on cultured endothelial-cell. Biorheology 25:461–470, 1988.Google Scholar
  75. 75.
    Paul, R., P. Heil, J. P. Spatz, and U. S. Schwarz. Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment. Biophys. J. 94:1470–1482, 2008.CrossRefGoogle Scholar
  76. 76.
    Pawar, P., S. Jadhav, C. D. Eggleton, and K. Konstantopoulos. Roles of cell and microvillus deformation and receptor–ligand binding kinetics in cell rolling. Am. J. Physiol. Heart Circ. Physiol. 295:H1439–H1450, 2008.CrossRefGoogle Scholar
  77. 77.
    Peskin, C. S., G. M. Odell, and G. F. Oster. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65:316–324, 1993.CrossRefGoogle Scholar
  78. 78.
    Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26:1781–1802, 2005.CrossRefGoogle Scholar
  79. 79.
    Pollard, T. D., and G. G. Borisy. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465, 2003.CrossRefGoogle Scholar
  80. 80.
    Poujade, M., E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104:15988–15993, 2007.CrossRefGoogle Scholar
  81. 81.
    Rubinstein, B., K. Jacobson, and A. Mogilner. Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model. Sim. 3:413–439, 2005.MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Sakamoto, N., N. Saito, X. B. Han, T. Ohashi, and M. Sato. Effect of spatial gradient in fluid shear stress on morphological changes in endothelial cells in response to flow. Biochem. Biophys. Res. Commun. 395:264–269, 2010.CrossRefGoogle Scholar
  83. 83.
    Sasamoto, A., M. Nagino, S. Kobayashi, K. Naruse, Y. Nimura, et al. Mechanotransduction by integrin is essential for IL-6 secretion from endothelial cells in response to uniaxial continuous stretch. Am. J. Physiol. Cell Physiol. 288:C1012–C1022, 2005.CrossRefGoogle Scholar
  84. 84.
    Sato, M., K. Nagayama, N. Kataoka, M. Sasaki, and K. Hane. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33:127–135, 2000.CrossRefGoogle Scholar
  85. 85.
    Sawada, Y., M. Tamada, B. J. Dubin-Thaler, O. Cherniavskaya, R. Sakai, et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–1026, 2006.CrossRefGoogle Scholar
  86. 86.
    Shrader, C. D., H. G. Ressetar, J. Luo, E. V. Cilento, and F. D. Reilly. Acute stretch promotes endothelial cell proliferation in wounded healing mouse skin. Arch. Dermatol. Res. 300:495–504, 2008.CrossRefGoogle Scholar
  87. 87.
    Small, J. V., M. Herzog, and K. Anderson. Actin filament organization in the fish keratocyte lamellipodium. J. Cell Biol. 129:1275–1286, 1995.CrossRefGoogle Scholar
  88. 88.
    Sun, G. Y., Y. Zhang, B. Huo, and M. Long. Surface-bound selectin–ligand binding is regulated by carrier diffusion. Eur. Biophys. J. 38:701–711, 2009.CrossRefGoogle Scholar
  89. 89.
    Szymanski, M. P., E. Metaxa, H. Meng, and J. Kolega. Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation. Ann. Biomed. Eng. 36:1681–1689, 2008.CrossRefGoogle Scholar
  90. 90.
    Ter-Oganessian, N., B. Quinn, D. A. Pink, and A. Boulbitch. Active microrheology of networks composed of semiflexible polymers: computer simulation of magnetic tweezers. Phys. Rev. E 72:041510, 2005.CrossRefGoogle Scholar
  91. 91.
    Thery, M., A. Jimenez-Dalmaroni, V. Racine, M. Bornens, and F. Julicher. Experimental and theoretical study of mitotic spindle orientation. Nature 447:493–496, 2007.CrossRefGoogle Scholar
  92. 92.
    Thery, M., V. Racine, A. Pepin, M. Piel, Y. Chen, et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7:947–953, 2005.CrossRefGoogle Scholar
  93. 93.
    Ueki, Y., N. Sakamoto, and M. Sato. Direct measurement of shear strain in adherent vascular endothelial cells exposed to fluid shear stress. Biochem. Biophys. Res. Commun. 394:94–99, 2010.CrossRefGoogle Scholar
  94. 94.
    Ueki, Y., N. Sakamoto, and M. Sato. Cyclic force applied to focal adhesions induces actin recruitment depending on the dynamic loading pattern. Open Biomed. Eng. J. 4:129–134, 2010.CrossRefGoogle Scholar
  95. 95.
    Usami, S., H. H. Chen, Y. Zhao, S. Chien, and R. Skalak. Design and construction of a linear shear stress flow chamber. Ann. Biomed. Eng. 21:77–83, 1993.CrossRefGoogle Scholar
  96. 96.
    Verkhovsky, A. B., T. M. Svitkina, and G. G. Borisy. Network contraction model for cell translocation and retrograde flow. Biochem. Soc. Symp. 65:207–222, 1999.Google Scholar
  97. 97.
    Vicente-Manzanares, M., X. Ma, R. S. Adelstein, and A. R. Horwitz. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10:778–790, 2009.CrossRefGoogle Scholar
  98. 98.
    Wang, G. M., and W. C. Sandberg. Complete all-atom hydrodynamics of protein unfolding in uniform flow. Nanotechnology 21:235101, 2010.CrossRefGoogle Scholar
  99. 99.
    Wang, N., and Z. Suo. Long-distance propagation of forces in a cell. Biochem. Biophys. Res. Commun. 328:1133–1138, 2005.CrossRefGoogle Scholar
  100. 100.
    Wu, J. H., Y. Fang, V. I. Zarnitsyna, T. P. Tolentino, M. L. Dustin, et al. A coupled diffusion-kinetics model for analysis of contact-area FRAP experiment. Biophys. J. 95:910–919, 2008.CrossRefGoogle Scholar
  101. 101.
    Wu, L., B. T. Xiao, X. L. Jia, Y. Zhang, S. Q. Lü, et al. Impact of carrier stiffness and microtopology on two-dimensional kinetics of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) interactions. J. Biol. Chem. 282:9846–9854, 2007.CrossRefGoogle Scholar
  102. 102.
    Wuang, S. C., B. Ladoux, and C. T. Lim. Probing the chemo-mechanical effects of an anti-cancer drug emodin on breast cancer cells. Mol. Cell Bioeng., 2011. doi:10.1007/s12195-011-0163-1.
  103. 103.
    Yago, T., J. Z. Lou, T. Wu, J. Yang, J. J. Miner, et al. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Invest. 118:3195–3207, 2008.Google Scholar
  104. 104.
    Yam, P. T., C. A. Wilson, L. Ji, B. Hebert, E. L. Barnhart, et al. Actin–myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 178:1207–1221, 2007.CrossRefGoogle Scholar
  105. 105.
    Yu, Y., and J. Y. Shao. Simultaneous tether extraction contributes to neutrophil rolling stabilization: a model study. Biophys. J. 92:418–429, 2007.CrossRefGoogle Scholar
  106. 106.
    Zarbock, A., and K. Ley. Mechanisms and consequences of neutrophil interaction with the endothelium. Am. J. Pathol. 172:1–7, 2008.CrossRefGoogle Scholar
  107. 107.
    Zhang, F., W. D. Marcus, N. H. Goyal, P. Selvaraj, T. A. Springer, et al. Two-dimensional kinetics regulation of alpha(L)beta(2)-ICAM-1 interaction by conformational changes of the alpha(L)-inserted domain. J. Biol. Chem. 280:42207–42218, 2005.CrossRefGoogle Scholar
  108. 108.
    Zhao, Y. H., S. Chien, and S. Weinbaum. Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx. Biophys. J. 80:1124–1140, 2001.CrossRefGoogle Scholar
  109. 109.
    Zou, X., Y. Liu, Z. Chen, G. I. Cardenas-Jiron, and K. Schulten. Flow-induced beta-hairpin folding of the glycoprotein Ibalpha beta-switch. Biophys. J. 99:1182–1191, 2010.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  1. 1.Key Laboratory of Microgravity, Center of Biomechanics and BioengineeringInstitute of Mechanics, Chinese Academy of SciencesBeijingChina
  2. 2.Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
  3. 3.Division of Bioengineering, Department of Mechanical Engineering, Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
  4. 4.Institute of Biomechanics, School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouChina
  5. 5.Institute for Frontier Medical SciencesKyoto UniversityKyotoJapan

Personalised recommendations