Cellular and Molecular Bioengineering

, Volume 5, Issue 1, pp 1–13

Elastic Properties of Actin Assemblies in Different States of Nucleotide Binding

Article

Abstract

In this paper, the elastic properties of monomeric actin (G-actin) and the trimer nucleus (G-actin trimer) in different states of nucleotide binding are estimated using steered molecular dynamic (SMD) simulations. Three nucleotide binding states are considered: ADP- and ATP-bound actin and nucleotide-free actin assemblies. Our results show that nucleotide binding and the corresponding changes in structure have significant effects on the mechanical behaviors of actin assemblies. Simulations reveal that the deformation behavior of G-actin monomers is generally elastic up to engineering strains of 16 and 40% in the tension and shear tests, respectively. In addition, the G-actin trimers react linearly up to strains of 18%. The computed persistence lengths for G-actin monomers and trimers are in the range of 8–20 μm, which are consistent with earlier experimental results. Our atomistic simulation results also reveal that formation and rupture of hydrogen bonds between actin nucleotide binding site and its nucleotide have significant role in response of actin assemblies to loading. This study provides more information about the relationship of actin nucleotide binding and mechanical properties of cytoskeleton.

Keywords

Mechanical properties Steered molecular dynamics simulation G-actin Hydrogen bond Young’s modulus Persistence length 

References

  1. 1.
    Ackbarow, T., and M. Buehler. Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies. J. Mater. Sci. 42:8771–8787, 2007.CrossRefGoogle Scholar
  2. 2.
    Allen, M. P., and D. J. Tildesley. Computer Simulation of Liquids. New York: Oxford University Press, 1987.MATHGoogle Scholar
  3. 3.
    Boal, D. Mechanics of the Cell. New York: Cambridge University Press, 2002.Google Scholar
  4. 4.
    Chu, J.-W., and G. A. Voth. Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis. PNAS 102:13111–13116, 2005.CrossRefGoogle Scholar
  5. 5.
    Chu, J.-W., and G. A. Voth. Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys. J. 90:1572–1582, 2006.CrossRefGoogle Scholar
  6. 6.
    Civelekoglu, G., and L. Edelstein-Keshet. Modelling the dynamics of F-actin in the cell. Bull. Math. Biol. 56:587–616, 1994.MATHGoogle Scholar
  7. 7.
    Gardel, M. L., F. Nakamura, J. H. Hartwig, J. C. Crocker, T. P. Stossel, and D. A. Weitz. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. PNAS 103:1762–1767, 2006.CrossRefGoogle Scholar
  8. 8.
    Gardel, M. L., J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz. Elastic behavior of cross-linked and bundled actin networks. Science 304:1301–1305, 2004.CrossRefGoogle Scholar
  9. 9.
    Graceffa, P., and R. Dominguez. Crystal structure of monomeric actin in the ATP state: structural basis of nucleotide-dependent actin dynamics. J. Biol. Chem. 278:34172–34180, 2003.CrossRefGoogle Scholar
  10. 10.
    Grubmüller, H., H. Heller, A. Windemuth, and K. Schulten. Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Simul. 6:121–142, 1991.CrossRefGoogle Scholar
  11. 11.
    Holmes, K. C., D. Popp, W. Gebhard, and W. Kabsch. Atomic model of the actin filament. Nature 347:44–49, 1990.CrossRefGoogle Scholar
  12. 12.
    Humphrey, W., A. Dalke, and K. Schulten. VMD: visual molecular dynamics. J. Mol. Graph. 14:33–38, 1996.CrossRefGoogle Scholar
  13. 13.
    Huxley, H. E., A. Stewarta, H. Sosaa, and T. Irvinga. X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys. J. 67:2411–2421, 1994.CrossRefGoogle Scholar
  14. 14.
    Isambert, H., P. Venier, A. Maggs, A. Fattoum, R. Kassab, D. Pantaloni, and M. Carlier. Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J. Biol. Chem. 270:11437–11444, 1995.CrossRefGoogle Scholar
  15. 15.
    Isralewitz, B., M. Gao, and K. Schulten. Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 11:224–230, 2001.CrossRefGoogle Scholar
  16. 16.
    Keten, S., and M. J. Buehler. Large deformation and fracture mechanics of a beta-helical protein nanotube: atomistic and continuum modeling. Comput. Meth. Appl. Mech. Eng. 197:3203–3214, 2008.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kojima, H., A. Ishijima, and T. Yanagida. Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. PNAS 91:12962–12966, 1994.CrossRefGoogle Scholar
  18. 18.
    Lee, E., M. Gao, N. Pinotsis, M. Wilmanns, and K. Schulten. Mechanical strength of the titin Z1Z2-telethonin complex. Structure 14:497–509, 2006.CrossRefGoogle Scholar
  19. 19.
    Lewin, B., L. Cassimeris, V. R. Lingappa, and L. Cassimeris. Cells. Sudbury, MA: Jones & Bartlett Publishers, 2006, 863 pp.Google Scholar
  20. 20.
    Lodish, H., A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott, L. Zipursky, and J. Darnell. Molecular Cell Biology. New York: W.H. Freeman & Company, 2005, 973 pp.Google Scholar
  21. 21.
    MacKerell, A. D., D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102:3586–3616, 1998.Google Scholar
  22. 22.
    Minehardt, T. J., P. A. Kollman, R. Cooke, and E. Pate. The open nucleotide pocket of the profilin/actin X-ray structure is unstable and closes in the absence of profilin. Biophys. J. 90:2445–2449, 2006.CrossRefGoogle Scholar
  23. 23.
    Mofrad, M. R. K. Rheology of the cytoskeleton. Annu. Rev. Fluid Mech. 41:433–453, 2009.CrossRefGoogle Scholar
  24. 24.
    Mofrad, M. R. K., and R. D. Kamm. Introduction, with the biological basis for cell mechanics. In: Cytoskeletal Mechanics. Cambridge: Cambridge University Press, 2006, pp. 1–17.Google Scholar
  25. 25.
    Nelson, P. Biological Physics. New York: W. H. Freeman, 2004.Google Scholar
  26. 26.
    Oda, T., M. Iwasa, T. Aihara, Y. Maeda, and A. Narita. The nature of the globular- to fibrous-actin transition. Nature 457:441–445, 2009.CrossRefGoogle Scholar
  27. 27.
    Otterbein, L. R., P. Graceffa, and R. Dominguez. The crystal structure of uncomplexed actin in the ADP state. Science 293:708–711, 2001.CrossRefGoogle Scholar
  28. 28.
    Palmer, A., T. G. Mason, J. Xu, S. C. Kuo, and D. Wirtz. Diffusing wave spectroscopy microrheology of actin filament networks. Biophys. J. 76:1063–1071, 1999.CrossRefGoogle Scholar
  29. 29.
    Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26:1781–1802, 2005.CrossRefGoogle Scholar
  30. 30.
    Popov, E. P. Engineering Mechanics of Solids. Upper Saddle River, NJ: Prentice Hall, 1998.Google Scholar
  31. 31.
    Sadd, M. H. Elasticity: Theory, Applications, and Numerics. St Louis, MO: Academic Press, 2004.Google Scholar
  32. 32.
    Schlick, T., R. D. Skeel, A. T. Brunger, L. V. Kale, J. A. Board, J. Hermans, and K. Schulten. Algorithmic challenges in computational molecular biophysics. J. Comput. Phys. 151:9–48, 1999.Google Scholar
  33. 33.
    Sotomayor, M., and K. Schulten. Single-molecule experiments in vitro and in silico. Science 316:1144–1148, 2007.CrossRefGoogle Scholar
  34. 34.
    Stuart, S. J., A. B. Tutein, and J. A. Harrison. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112:6472–6486, 2000.CrossRefGoogle Scholar
  35. 35.
    Timoshenko, S. Theory of Elasticity. New York: McGraw-Hill Companies, 1970.Google Scholar
  36. 36.
    Tuszynski, J. A., J. A. Brown, and D. Sept. Models of the collective behavior of proteins in cells: tubulin, actin and motor proteins. J. Biol. Phys. 29:401–428, 2003.CrossRefGoogle Scholar
  37. 37.
    van Duin, A. C. T., S. Dasgupta, F. Lorant, and W. A. Goddard. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105:9396–9409, 2001.CrossRefGoogle Scholar
  38. 38.
    Vikhorev, P. G., N. N. Vikhoreva, and A. Månsson. Bending flexibility of actin filaments during motor-induced sliding. Biophys. J. 95:5809–5819, 2008.CrossRefGoogle Scholar
  39. 39.
    Wakabayashi, K., Y. Sugimoto, H. Tanaka, Y. Ueno, Y. Takezawa, and Y. Amemiya. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys. J. 67:2422–2435, 1994.CrossRefGoogle Scholar
  40. 40.
    Wang, Y. L. Analysis of microtubule curvature. In: Cell Mechanics, edited by Y. L. Wang and D. E. Discher. Academic Press, 2007, p. 496.Google Scholar
  41. 41.
    Zheng, X., K. Diraviyam, and D. Sept. Nucleotide effects on the structure and dynamics of actin. Biophys. J. 93:1277–1283, 2007.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  1. 1.Department of Civil EngineeringSharif University of TechnologyTehranIran

Personalised recommendations