Cellular and Molecular Bioengineering

, Volume 4, Issue 2, pp 192–204 | Cite as

Microtubule Tip Tracking and Tip Structures at the Nanometer Scale Using Digital Fluorescence Microscopy

  • Alexei O. Demchouk
  • Melissa K. Gardner
  • David J. Odde


Microtubules (MTs) are central to fundamental cellular processes including mitosis, polarization, and axon extension. A key issue is to understand how MT-associated proteins and therapeutic drugs, such as the anticancer drug paclitaxel, control MT self-assembly. To facilitate this research, it would be helpful to have automated methods that track the tip of dynamically assembling MTs as observed via fluorescence microscopy. Through a combination of digital fluorescence imaging with MT modeling, model-convolution, and automated image analysis of live and fixed MTs, we developed a method for MT tip tracking that includes estimation of the measurement error. We found that the typical single-frame tip tracking accuracy of GFP-tubulin labeled MTs in living LLC-PK1α cells imaged with a standard widefield epifluorescence digital microscope system is ~36 nm, the equivalent of ~4.5 tubulin dimer layers. However, if the MT tips are blunt, the tip tracking accuracy can be as accurate as ~15 nm (~2 dimer layers). By fitting a Gaussian survival function to the MT tip intensity profiles, we also established that MTs within living cells are not all blunt, but instead exhibit highly variable tapered tip structures with a protofilament length standard deviation of ~180 nm. More generally, the tip tracking method can be extended to track the tips of any individual fluorescently labeled filament, and can estimate filament tip structures both in vivo and in vitro with single-frame accuracy on the nanoscale.


Microtubules Tracking Automation MATLAB Algorithm LLC-PK1 Tips 



We thank Dominique Seetapun for technical assistance. The research was conducted with support from NIH (GM071522 and GM076177), and NSF (MCB-0615568).

Supplementary material

12195_2010_155_MOESM1_ESM.pptx (270 kb)
Supplementary material 1 (PPTX 269 kb)


  1. 1.
    Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell. New York: Garland Science, 2007.Google Scholar
  2. 2.
    Bates, M., B. Huang, G. T. Dempsey, and X. Zhuang. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753, 2007.CrossRefGoogle Scholar
  3. 3.
    Betzig, E., G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645, 2006.CrossRefGoogle Scholar
  4. 4.
    Bicek, A. D., E. Tüzel, D. M. Kroll, and D. J. Odde. Analysis of microtubule curvature. Methods Cell Biol. 83:237–268, 2007.CrossRefGoogle Scholar
  5. 5.
    Bicek, A. D., E. Tuzel, A. Demtchouk, M. Uppalapati, W. O. Hancock, D. M. Kroll, and D. J. Odde. Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells. Mol. Biol. Cell 20:2943–2953, 2009.CrossRefGoogle Scholar
  6. 6.
    Brangwynne, C. P., G. H. Koenderink, E. Barry, Z. Dogic, F. C. MacKintosh, and D. A. Weitz. Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking. Biophys. J. 93:346–359, 2007.CrossRefGoogle Scholar
  7. 7.
    Cassimeris, L., N. K. Pryer, and E. D. Salmon. Real-time observations of microtubule dynamic instability in living cells. J. Cell Biol. 107:2223–2231, 1988.CrossRefGoogle Scholar
  8. 8.
    Chrétien, D., S. D. Fuller, and E. Karsenti. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell. Biol. 129:1311–1328, 1995.CrossRefGoogle Scholar
  9. 9.
    Gardner, M. K., D. J. Odde, and K. Bloom. Hypothesis testing via integrated computer modeling and digital fluorescence microscopy. Methods 41:232–237, 2007.CrossRefGoogle Scholar
  10. 10.
    Gardner, M., B. Sprague, C. Pearson, B. Cosgrove, A. Bicek, K. Bloom, E. Salmon, and D. Odde. Model convolution: a computational approach to digital image interpretation. Cell. Mol. Bioeng. 3:163–170, 2010.CrossRefGoogle Scholar
  11. 11.
    Gildersleeve, R. F., A. R. Cross, K. E. Cullen, A. P. Fagen, and R. C. Williams. Microtubules grow and shorten at intrinsically variable rates. J. Biol. Chem. 267:7995–8006, 1992.Google Scholar
  12. 12.
    Hadjidemetriou, S., D. Toomre, and J. Duncan. Motion tracking of the outer tips of microtubules. Med. Image Anal. 12:689–702, 2008.CrossRefGoogle Scholar
  13. 13.
    Mandelkow, E. M., E. Mandelkow, and R. A. Milligan. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114:977–991, 1991.CrossRefGoogle Scholar
  14. 14.
    Mitchison, T., and M. Kirschner. Dynamic instability of microtubule growth. Nature 312:237–242, 1984.CrossRefGoogle Scholar
  15. 15.
    Odde, D. J., L. Cassimeris, and H. M. Buettner. Kinetics of microtubule catastrophe assessed by probabilistic analysis. Biophys. J. 69:796–802, 1995.CrossRefGoogle Scholar
  16. 16.
    Odde, D. J., H. M. Buettner, and L. Cassimeris. Spectral analysis of microtubule assembly dynamics. AIChE J. 42:1434–1442, 1996.CrossRefGoogle Scholar
  17. 17.
    Rusan, N. M., C. J. Fagerstrom, A. C. Yvon, and P. Wadsworth. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-{alpha} Tubulin. Mol. Biol. Cell 12:971–980, 2001.Google Scholar
  18. 18.
    Schek, III, H. T., M. K. Gardner, J. Cheng, D. J. Odde, and A. J. Hunt. Microtubule assembly dynamics at the nanoscale. Curr. Biol. 17:1445–1455, 2007.CrossRefGoogle Scholar
  19. 19.
    Schermelleh, L., P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332–1336, 2008.CrossRefGoogle Scholar
  20. 20.
    Sprague, B. L., C. G. Pearson, P. S. Maddox, K. S. Bloom, E. Salmon, and D. J. Odde. Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys. J. 84:3529–3546, 2003.CrossRefGoogle Scholar
  21. 21.
    VanBuren, V., D. J. Odde, and L. Cassimeris. Estimates of lateral and longitudinal bond energies within the microtubule lattice. Proc. Nat. Acad. Sci. USA 99:6035–6040, 2002.CrossRefGoogle Scholar
  22. 22.
    VanBuren, V., L. Cassimeris, and D. J. Odde. Mechanochemical model of microtubule structure and self-assembly kinetics. Biophys. J. 89:2911–2926, 2005.CrossRefGoogle Scholar
  23. 23.
    Walker, R. A., E. T. O’Brien, N. K. Pryer, M. F. Soboeiro, W. A. Voter, H. P. Erickson, and E. D. Salmon. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107:1437–1448, 1988.CrossRefGoogle Scholar
  24. 24.
    Wan, X., R. P. O’Quinn, H. L. Pierce, A. P. Joglekar, W. E. Gall, J. G. DeLuca, C. W. Carroll, S. Liu, T. J. Yen, B. F. McEwen, P. T. Stukenberg, A. Desai, and E. Salmon. Protein architecture of the human kinetochore microtubule attachment site. Cell 137:672–684, 2009.CrossRefGoogle Scholar
  25. 25.
    Waterman-Storer, C. M., and E. Salmon. How microtubules get fluorescent speckles. Biophys. J. 75:2059–2069, 1998.CrossRefGoogle Scholar
  26. 26.
    Witte, H., D. Neukirchen, and F. Bradke. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180:619, 2008.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Alexei O. Demchouk
    • 1
  • Melissa K. Gardner
    • 1
    • 2
  • David J. Odde
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations